
MediaRich CORE 6.2

Programmer's Guide

Published: September 2020

Contents

CHAPTER 1 MediaRich CORE Programming 6

CHAPTER 2 MediaRich Client APIs 8

API Overview 8

API Selection 9

MediaRich Requests 11

HTTP API 12

.NET API 16

Java API 17

Web Services API 19

COM Client API 22

Using Request Parameters 27

CHAPTER 3 Using MediaScript 36

The Media Object 37

Preprocessor Directives 37

Named Arguments 38

File Systems 39

MediaScript Error Handling 46

CHAPTER 4 MediaScript Objects and Methods 48

Working with Media Processing Functions 49

Request and Response Global Objects 54

Media Object 68

File Object 208

System Object and Methods 220

XmlDocument Object 221

TextResponse Object 223

TextExtraction Object 226

IccProfile Object 228

Zip Object 232

Unzip Object 233

Emailer Object 235

Cubic Object (2D Interpolator) 240

The RgbColor Object 241

The CmykColor Object 242

The AWS Object 243

The Azure Object 246

CHAPTER 5 MediaRich CORE Audio/Video 2 248

MediaRich AVCore 2 249

Basic AV Transcoding 253

Using AV Settings Files 255

AVCore 2 Callbacks 262

Working with AVClips 264

AVCore 2 Metadata 265

AVCore 2 Best Practices 266

CHAPTER 6 MediaRich CORE Audio/Video 1.1 (Legacy) 268

A/V CORE 1.1 Overview 269

Using MediaScript to Access A/V 1.1 Objects 270

Querying Movie Metadata 273

Extracting Frames from a Movie 275

Using ExportMovie to Create New Movies 276

Using Compression Settings Files 283

The Scene Sampler 283

The AVCore 1.1 Examples 285

CHAPTER 7 MediaRich Proof Sheet Generator 294

The generate Method 295

Proof Sheet Layout 295

Defining the Proof Sheet XML Input 296

CHAPTER 8 MediaRich Hot Folders 306

Working with Hot Folders 307

Hot Folder Script Structure 310

Hot Folder Script Programming 312

CHAPTER 9 MediaRich Color Management 318

MediaRich Color Management 318

MediaScript Color Management Functions 320

Accuracy and Reversibility of Color Conversions 322

Common Color Management Questions 323

CHAPTER 10 MediaRich Metadata Support 326

Low-Level Metadata Interface 326

High-Level Support for EXIF, IPTC, and XMP 329

Common Metadata Methods 341

Metadata from AVLowLevel API 346

APPENDIX A MediaRich Programming Best Practices 350

Media Creation Best Practices 351

MediaScript Integration 353

Managing MRL Parameters 353

Managing Performance 354

APPENDIX B MediaScript Troubleshooting 356

MediaScript Problems 357

Script Errors 358

MediaGenerator Errors 361

Loading Raw Camera Files 361

Memory Issues with Very Large Image Files 362

APPENDIX C File Format Support 364

MediaRich Image File Formats Natively Supported 365

MediaRich Audio and Video File Formats Natively Supported 369

Office File Formats Supported 372

CHAPTER 1

MediaRich CORE Programming

6

TheMediaRich CORE Platform is designed specifically to make it easy to create images from flexible
and efficient image templates. Video, imaging, documents, and Adobe .pdf, .eps, and .ai files are now
available for rendering by theMediaRich CORE.

Important: A/V Core 2.0 is only available on Windows Operating Systems at this time.

The platform consists of several components:

MediaRich CORE

TheMediaRich CORE is a multi-threaded application server which accepts incoming requests and
either returns a previously cached response or executes the appropriateMediaScript to handle the
request.

MediaScript

MediaScript is an interpreted scripting language based on the ECMAScript (commonly known as
JavaScript) language specification. MediaScript extends ECMAScript with several new objects that
providemedia processing and general application server functionality. For more information, see
“Using MediaScript” on page 36.

Client APIs

The client APIs allow end users to generate requests and process responses. MediaRich includes
support for standard HTTP URLs, Web Services, .NET, Java and COM. For more information, see
“MediaRich Client APIs” on page 8.

MediaRich uses a simple stateless protocol for forming image processing requests and streaming
back the resulting image data.

The life-cycle of a MediaRich request follows this sequence of events:

1. Request Creation. Client creates a request to apply a specific set of parameters to original
image. AMediaRich request consists of several elements: a file path, the name of a function to

MediaRich CORE 6.2 • Programmer's Guide

execute (zoom, scale, etc.), arguments to that function, and other user- and system-defined
parameters. Themost common type of a MediaRich request is an HTTP URL which is usually
embedded in HTML tag.

2. Request Transmission. After a request is created, it is sent to MediaRich. In most cases it is a
HTTP URL, and web browser sends the request. Alternatively, applications can send requests
directly to theMedia Generator via Web Services.

3. Cache Lookup. When Media Generator receives a request, it first checks its internal cache for a
previously generated and cached image. If one is found, it is returned as the response and the
function execution (step 4) is skipped.

4. MediaScript Execution. The requested MediaScript function is executed using the arguments
and parameters supplied in the request. The function sets the response object (usually an image)
and whether the response should be cached or streamed directly to the client. When the script
terminates, the response is sent to the client.

5. Response Handling. Finally, the client (usually web browser) processes the response. A
response can be either a path (in the case of a cached or file path response) or the actual binary
data (in the case of a streamed response).

7

CHAPTER 2

MediaRich Client APIs

8

TheMediaRich platform provides five client APIs: HTTP, Web Service, Java, .NET, and COM. All five
interfaces allow clients to create requests and send them to a MediaRich CORE. TheMediaRich CORE
will, in most cases, respond by generating an image based on the properties in the request and
returning it to the calling client.

Chapter summary

“API Overview” on page 8

“API Selection” on page 9

“MediaRich Requests” on page 11

“HTTP API” on page 12

“.NET API” on page 16

“Java API” on page 17

“Web Services API” on page 19

“COM Client API” on page 22

“Using Request Parameters” on page 27

API Overview

All five client APIs provide the same basic functionality, but are intended for use in different
environments. HTTP URLs are usually embedded in HTML pages and can be generated dynamically
by application servers or client-side scripts. When end users direct their web browsers to a page
containing a MediaRich URL, the browser sends the URL to theMediaRich Web Server and then
displays the returned image or other asset.

Client applications can use all of these APIs to communicate with a MediaRich server.

MediaRich CORE 6.2 • Programmer's Guide

HTTP API

The HTTP API is the simplest of the APIs. It can be used by any application that can send requests to
a HTTP server. The HTTP API is well suited to Web applications that use AJAX to talk to a server.

For detailed usage information, see "HTTP API" on page 12.

Web service API

TheWeb Service API is also fairly simple, and is used primarily by applications designed to integrate a
number ofWeb services into a single application.

.NET and Java client APIs

The .NET and Java client APIs are themost powerful APIs. They allow programs written in Microsoft’s
.NET and Sun’s Java development environments to communicate with MediaRich. These APIs can do
everything that the HTTP and Web Service APIs can do, and a lot more.

COM client API

The COM client API allows programs and scripts that can utilize COM to communicate with a
MediaRich server. The COM API is more powerful than the HTTP orWeb Service APIs, but is more
limited in functionality than the .NET and Java APIs. The COM API should be used by applications
that do not have access to the .NET framework.

TheWeb Service, .NET and COM APIs are only applicable to writing client applications that will run on
theMicrosoft Windows platform. The HTTP and Java APIs can be used to write client applications
that will run on any platform. All of the client APIs can make requests to any MediaRich CORE
regardless of the platform on which it is running.

API Selection

To determine which MediaRich client API is the best fit, consider the nature of the client application
you are writing and the development environment you will use to write that application.

Using the HTTP API

You can use he HTTP API in almost all situations. This is true because nearly every development
language and environment provides a way to submit HTTP requests to a web server. MediaRich is a
Web server, so any application that can submit HTTP requests can communicate with MediaRich
using this protocol.

The HTTP protocol is less capable than some of the other protocols, but it has significant advantages
if it fits your needs. Firstly, it is the simplest protocol, and therefore the easiest to understand and
use. Secondly, you can always use a web browser during development to check your MediaRich
scripts outside of your application environment.

9

CHAPTER 2 MediaRich Client APIs

Development application and environment

Reviewing the following questions will help you to choose the right API for your application. Use this
process to identify the characteristics of your application and environment and point you to the best
fit API for your needs.

Is your application web browser-based?

Your answer to this question will be “yes” if you are generating web pages that will contain media
assets delivered by MediaRich. You might also answer “yes” here if you are writing an interactive web
application, using DHTML, JavaScript and/or Ajax. If you do answer “yes” to this question, then the
HTTP API is probably what you’ll want to use.

If you are writing a web application and you will access MediaRich from the web server rather than
from code running on the client, the nature of the environment in which your server-side code will
run should dictate the API to use. Review the other questions to determine which API to use in this
case.

Is your application written in a Visual Studio .NET language or in Java?

If so, you’ll want to use the respectiveMediaRich API (.Net or Java). This will most likely be the case if
you are writing a stand-alone client application. It will also be true if you are accessing MediaRich
from server-side logic in a Web application, and you are writing that logic in ASP .NET or JSP.

Is your application designed to access web services using the web Services framework?

If so, you might want to use theWeb Services API instead of one of the others. If the answers to prior
questions suggest another API, the choice will be yours as to which API to use.

Is your application written in a “legacy” development environment on the Windows platform?

In other words, are you writing a Windows application that does not have access to the .NET
framework?

The answer is “yes” if you are developing in an older version of Visual Studio, or if you are writing
older style Visual Basic or Visual Java applications or scripts. In this case, you will want to use either
the HTTP or COM API.

Are you writing code that must be cross-platform?

If so, you’ll want to use either the HTTP or Java APIs. The other APIs are applicable only to the
Microsoft Windows environment.

Do you need to send file data, such as image, movie, or script files, from your client to the
MediaRich server?

If so, you will need to use the .NET, Java, or COM API. The HTTP and Web Services APIs do not allow
sending files or other large blocks of data to the server.

10

MediaRich CORE 6.2 • Programmer's Guide

MediaRich Requests

A completeMediaRich request specifies the following:

• TheMediaRich CORE that will handle the request
• TheMediaScript script file that contains the function to be executed
• The name of theMediaScript function to be executed in that file
• A set of arguments and parameters to be passed to that function

The kind of result returned to the caller by the request is determined by the function that is
executed, and can be any block of data along with a MIME type that indicates the type of that data.
The type of result most often returned by MediaRich requests is an image file (such as a JPEG or GIF
file). Other common result types are plain text, an HTML page, a XML document, or a video or audio
file.

When the requested function is executed on the server, that execution can produce desirable side
effects in addition to producing the result that is returned to the caller. For example, the function can
write information to either the server’s local disk or to a network storage location. The function
might also send email, write to a database, or store something on a FTP server. A singleMediaScript
function can be arbitrarily complex, and can therefore do almost anything that can be conceived of.

The following properties can be specified in a MediaRich request. Many of these are optional. Which
of these are required and which are optional is a function of the particular client API being used.

Generator Name

Specifies the name or IP address of theMedia Generator that will handle the request. If not supplied,
the default is localhost.

Generator Port

Specifies the port number that theMedia Generator is listening on. The default value is 9877, the
standard Media Generator port number.

Script Name

Specifies the name of the script file that contains the function to be executed. Unless a file system is
specified, the path will be interpreted relative to theMediaRich Scripts directory (see “File Systems”
on page 39 for a description of how to specify file systems). In simple cases where a function
execution is not required, a path to an image file can be supplied instead. In this case, the path is
interpreted relative to theMediaRich Media directory. This property has no default value and so
must be specified explicitly under all client APIs.

Function Name

The name of a function to call within the specified script file. If no function name is supplied, the
Media Generator will default to calling a function named main().

11

CHAPTER 2 MediaRich Client APIs

Function Arguments

A comma-separated list of arguments to the called function. Only numeric, boolean, and string
literals are allowed in the argument list. Strings must be enclosed in quotation marks ("). If not
supplied, the default value is an empty argument list.

Request Parameters

Request parameters are a list of named values that influence how the requested operation is
performed. There are two types of request parameters: System Parameters and Script Parameters.

• System Parameters explicitly affect the behavior of theMediaRich platform. They are used for
controlling theMediaRich cache and performing common image processing operations like scale
and crop without requiring additional scripting. The names and formats of these parameters are
detailed in “Post-Processing Parameters” on page 27 and “Cache Control Parameters” on page 34.

Note: System Parameters names are reserved for explicit MediaRich operations and should
not be used as the names of script parameters, irrespective of the API used to invoke the
script. System parameters may be used to perform their defined operations from any of the
APIs. Such operations are performed on the image saved by the script after the script has
executed.

• Script Parameters are parameters that are ignored by MediaRich, but may be accessed by the
script being executed. Functions access these parameters using the global request object’s
getParameter()method (see “getParameter()” on page 58. Script Parameters serve a purpose
similar to Function Arguments. A script may use either or both mechanisms.

HTTP API

The HTTP API is simply the API used by web browsers to talk to web servers. It involves sending a URL
to the server and receiving back a standard HTTP response. The response will indicate if the request
was performed successfully. If it was, the response can contain the results of the request, which
might be an image (a JPEG or GIF file, for example), or a Web page or XML document.

MediaRich acts like a normal web server, and can therefore process HTTP requests. As with any HTTP
request, the URL passed to MediaRich must be well-formed to describe the operation that the client
would likeMediaRich to perform. URLs that are properly formed to specify a MediaRich request are
called MediaRich Resource Locators, orMRLs.

In HTML web pages, the tag is used to insert a graphic or photographic image directly into the
flow of text and other images. Traditionally, the src attribute of the tag is a Uniform Resource
Locator (URL) which points to a static image file. Using MediaRich, the URL is replaced with a
MediaRich Resource Locator (MRL) that references a script function and contains parameters that
are used to dynamically generate an image. MRLs can be static strings, or they can be generated
automatically by client-side scripting languages such as VBScript or JavaScript or application server
languages such as ASP or JSP.

12

MediaRich CORE 6.2 • Programmer's Guide

Enabling the HTTP API
The HTTP API is only available if your MediaRich license includes theWeb Server extension and
MediaRich is installed behind aWeb server. This is determined by the kind ofMediaRich license that
is installed. Refer to theMediaRich CORE Installation and Administration Guide for more
information.

No \MediaRich\-specific modules or libraries are required on the client machine or in the client
development environment. Any client that can make standard HTTP requests can talk to MediaRich
using the HTTP API.

Note: The HTTP API is not available for the standard MediaRich for SharePoint product.
Contact Equilibrium if you require the HTTP API with this product.

Working with MRLs
AMediaRich Locator, orMRL, is essentially a URL that points to a MediaScript and includes script
parameters. When the request is made to a MediaRich server, the server executes the script with the
specified parameters if that image is not already generated.

Note: Some caching mechanisms, such as Inktomi and AOL, will not cache a URL that contains a
?. You can replace the ?with a / in any MRL to avoid these problems.

MRL Format

AMRL is simply a URL of a specific format that MediaRich understands. Here is the general form of a
MRL:
http://<server addr>/mgen/<script or image path> ?<param>=<value>&<param>=<value>...

AMRL string is formed by concatenating the following elements:

• The standard HTTP URL prefix http:// - it can also use HTTPS if theMediaRich Web Server has
been configured for SSL

• The name or IP address of theMediaRich server - this can include the server port number
• The value of the global ImageServerRoot property - the usual value for the image server root is

/mgen

• A forward slash (/) separator
• The path to theMediaScript script file to execute or to a static image on theMediaRich server
• If additional request properties and/or parameters are included, they must be separated from

the script path by a question mark (?) or forward slash (/). While the question mark is normally
used, the forward slash may be required for someWeb caches to cacheMRLs.

• Zero or more properties and/or parameters of the form name=value, separated by the
ampersand character (&).

As with any URL, all of the elements must be properly URL-encoded.

13

CHAPTER 2 MediaRich Client APIs

MRL Properties

MRLs can include properties (after the ?) to define the name of the function to call and its
arguments.

The function name is specified by:
f=<function name>

The function argument list is specified by:
args=<arg1>,<arg2>,...

Where the arguments are numeric, boolean, or string literals. String literals must be enclosed by
quotation marks (").

MRL Parameters

Both System and Script parameters can also be included at the end of a MRL in the sameway as the
f and args properties. For more information about System parameters, see “Post-Processing
Parameters” on page 27. Script parameters (those not understood by MediaRich) can be used by
script developers for any purpose they define.

MRL Example

Suppose you have the following:

• AMediaRich server named www.mediarich.com
• The default image server root (mgen)
• A script in theMediaRich Scripts directory named thumbnail.ms
• A function in thumbnail.ms named catalogThumb that takes three arguments: the name of an

image to thumbnail, the width of the thumbnail image, and the height of the thumbnail image

If you want to create a 100 pixel by 80 pixel thumbnail of an original named bike.tif, theMRL would
be:
http://www.mediarich.com/mgen/thumbnail.ms?f=catalogThumb&args=%22bike.tif%22,100,80

Note: The quotation marks enclosing bike.tif are URL-encoded as %22.

The script function catalogThumb should have a definition like the following:
function catalogThumb(fileName, width, height)

{

// create a media object.

var m = new Media();

// load the file specified by the first argument.

m.load(name @ "myfiles:" + fileName);

// use the second and third arguments to scale the image.

m.scale(xs @ width, ys @ height);

// and return the result as a jpg image.

m.save(type @ "jpeg");

14

MediaRich CORE 6.2 • Programmer's Guide

}

Working with SEOs
A Search Engine OptimizedMRL or SEO, is an MRL format specifically created to be compatible with
the common expectations of a referenced image resource for use on the web. An SEO is a
reformatted MRL that allows for themuch the same parameters and control over the resulting
media object as an MRL, with only a change in the format of the resource call. For more on MRL's
and how they function seeWorking with MRL's.

The SEO format is a more restrictive format than an MRL, and is intended as a replacement for media
objects that you wish to have affected by Search Engine Optimization, and thus should be used
where appropriate. SomeMediaScripts may require modification to work within the restrictions of
an SEO.

Some limitations of SEO’s are as follows:

• Parameters are positionally indexed - does not support argument name calls in the SEO
• SEO does not support post-process parameters
• SEO does not support ‘text strings’ and other such inputs as parameters

SEO Format

An SEO is simply a reformatted MRL, with a specific format and specific keys that MediaRich
understands. TheMediaScript resource is unchanged by the use of the SEO and thus depending on
the script may be called by either MRL or SEO.

Here is the general form of an SEO:
http://<server addr>/mgen/ss/<script path>/<function name>/<param value>/<param
value>/.../nc(0/1)/<image path>/<image name>

An SEO, like an MRL string, is formed by concatenating the following elements:

• The standard HTTP URL prefix http:// - it can also use HTTPS if theMediaRich Web Server has
been configured for SSL

• The name or IP address of theMediaRich server - this can include the server port number
• The value of the global ImageServerRoot property - the usual value for the image server root is

/mgen, followed by a forward-slash (/) separator
• The specific key 'ss' to indicate this is an SEO formatted request, followed by a forward-slash (/)

separator
• The path to theMediaScript script file to execute on theMediaRich server, followed by a forward-

slash (/) separator
• The function name of theMediaScript function to be called, followed by a forward-slash (/)

separator
• If additional request parameters are included, they must be separated by forward-slash (/)

separator. These parameters are positionally indexed and must align with the order the
MediaScript file expects the values

15

CHAPTER 2 MediaRich Client APIs

• The specific key 'nc(0/1)' to indicate the use ofMediaCache with the output file, followed by a
forward-slash (/) separator. 'nc0' indicates the use of theMediaCache features, 'nc1' indicates
MediaRich will not make use of theMediaCache and will regenerate the result file each time the
SEO is called

• The path to the static image on theMediaRich server to be used as a source, followed by a
forward-slash (/) separator

• The name of the resulting image generated by theMediaScript

As with any URL, all of the elements of the SEO must be properly URL-encoded.

SEO Example

Let's convert the existing MRL example to an SEO.

Suppose you have the following:

• AMediaRich server named www.mediarich.com
• The default image server root (mgen)
• A script in theMediaRich Scripts directory named thumbnail.ms
• A function in thumbnail.ms named catalogThumb that takes three arguments: the name of an

image to thumbnail, the width of the thumbnail image, and the height of the thumbnail image

If you want to create a 100 pixel by 80 pixel thumbnail of an original named bike.tif, the SEO would
be:

SEO:
http://www.mediarich.com/mgen/ss/thumbnail.ms/catalogThumb/100/80/nc1/bike.tif/bike_
thumb.jpg

MRL for reference:
http://www.mediarich.com/mgen/thumbnail.ms?f=catalogThumb&args=%22bike.tif%22,100,80

.NET API

The .NET API, along with the Java API, is themost powerful of theMediaRich APIs. It provides a set of
class (object) definitions that allow complex requests to be sent to MediaRich. Such requests can
included embedded media files (images, movies, etc.) as well as MediaScript code to be run on the
server. Likewise, nearly anything may be sent back to the client by the server in the response and
retrieved using this API, including any number of resulting media files.

Note: The .NET and Java APIs are very similar. They each provide the same set of classes and
capabilities, and we endeavor to make them identical in syntax and convention whenever
possible.

16

MediaRich CORE 6.2 • Programmer's Guide

Using the .NET API
All of thematerials necessary to develop against theMediaRich .NET API are installed on the server
during the normalWindows MediaRich server installation process. In the default case, they are
installed at the following location:
C:/Program Files/Equilibrium/MediaRich All Media Server/MediaRich APIs/.NET API

To use the .NET API, add a reference to the Equilibrium.MediaRich.Util.dll file to your C# or managed
C++ project. Alternatively, you may install the Equilibrium.MediaRich.Util.dll file into the global cache
by dropping it into the assembly folder in the system directory.

There is additional information about the .NET API in the fileMediaRich API.chm. Refer to this
resource for more details about using the API.

The Sample directory contains a sample client application that demonstrates the use of the API.
Refer to the ReadMe file in that directory for information about building and running the sample.

.NET API Example
The following example illustrates the basic use of the .NET API in C#:
// Connect to the MediaRich Server

MGConnection connection = new MGConnection("mymrserver.somecompany.com");

// Create the request

MGRequest request = connection.CreateRequest();

request.SetScript("sample:/sampleScript.ms");

request.SetFunction("scale");

request.SetParam("amount", "0.5");

// Commit the request

MGResponse response = request.Commit();

// Retrieve the response content

if (response.HasContent)

{

int respLength = response.ContentLength;

byte[] respData = new byte[respLength];

response.ReadContent(respData);

Java API

The Java API, along with the .NET API, is themost powerful of theMediaRich APIs. It provides a set of
class (object) definitions that allow complex requests to be sent to MediaRich. Such requests can
included embedded media files (images, movies, etc.) as well as MediaScript code to be run on the

17

CHAPTER 2 MediaRich Client APIs

server. Likewise, nearly anything may be sent back to the client by the server in the response and
retrieved using this API, including any number of resulting media files.

Note: The Java and .NET APIs are very similar. They each provide the same set of classes and
capabilities, and we endeavor to make them identical in syntax and convention whenever
possible.

Using the Java API
All of thematerials necessary to develop against theMediaRich Java API are installed on the server
during the normalMediaRich server installation process. On a Macintosh server, they are installed at
the following location:
/Applications/Equilibrium/MediaRich All Media Server/MediaRich APIs/Java API

On aWindows server, they are installed at the following location by default:
C:/Program Files/Equilibrium/MediaRich All Media Server/MediaRich APIs/Java API

On a Linux server, they are installed at the following location by default:
/usr/lib/Equilibrium/MediaRich_Media_Server/MediaRich APIs/Java API

To use the Java API, add theMediaRichAPI.jar file to your Java classpath during compilation of your
client code. You must also make the contents of this file available at runtime by either incorporating
the contents of the file into your own .jar file or by referencing it in your classpath.

The Java API documentation is supplied in standard javadoc form, in the javadoc directory.

The Sample directory contains a sample client application that demonstrates the use of the API.
Refer to the ReadMe file in that directory for information on building and running the sample.

Java API Example
The following example illustrates the basic use of the Java API:
// Connect to the MediaRich Server

MGConnection connection = new MGConnection("mymrserver.somecompany.com");

// Create the request

MGRequest request = connection.createRequest();

request.setScript("sample:/sampleScript.ms");

request.setFunction("scale");

request.setParam("amount", "0.5");

// Commit the request

MGResponse response = request.commit();

// Retrieve the response content

if (response.hasContent())

18

MediaRich CORE 6.2 • Programmer's Guide

{

int respLength = response.getContentLength();

byte[] respData = new byte[respLength];

response.readContent(respData);

}

Web Services API

TheMediaRich server can be integrated into any stand-alone or web application through the
MediaRich .Net Web Service. Web services use widely implemented standards such as XML and HTTP
to support remote procedure calls across many languages and platforms.

Installing the MediaGenWebService
TheMediaRich Web Service is implemented as an ASP.NETWeb application. Before clients can use
theWeb Service, it must be installed in IIS using theMediaRich Installer. To install the
MediaGenWebService, run the installer, select only theMediaGenWebServicemodule, and complete
the installation.

After theWeb service is installed, you can view the available methods by browsing
http://<host_name>/MediaGenWebService/MediaGenWebService.asmx.

Using MediaGenWebService
TheMediaGenWebService client contains methods used to create and execute requests. This allows
a request to be formed and forwarded to theMediaRich server via a Web method, providing the
framework for building transaction-based services for various media types.

Using this service to create and execute requests requires the following:

• Create a web service
• Create a parameters list that is appropriate for theMediaScript that will be called
• Call one of theMediaGenWebService executemethods
• Handle the response

Creating the Web Service

The first step in using theMediaGenWebService is to add a web reference to it in your C# project.
Create aWeb service object similar to the following:
//create the web service

localhost.MediaGenWebService mgws = new
localhost.MediaGenWebService();

When you have created the web service object, you can apply other methods to it to perform
MediaRich requests.

MediaGenWebService() is the default constructor.

19

CHAPTER 2 MediaRich Client APIs

MediaGenWebService ExecuteScriptCache Method

Use this method to call scripts that cache their responses. It returns a string containing a path to the
image.

Syntax

string ExecuteScriptCache(string scriptName,

string functionName,

string[] parameters)

Parameters

string scriptName - indicates the script to execute.

string functionName - indicates the function in theMediaScript to execute.

string[] parameters - represent the array of strings that you would like to pass to your script.
Each string must be of the form name=value. This is equivalent to everything that you would
normally pass on a MRL after the function name.

MediaGenWebService ExecuteScriptStream Method

Use this method to call scripts that stream their responses. This method returns an array of bytes.
Themime-type is an out parameter that you use to determine the type of image that the bytes
constitute.

Syntax

byte[] ExecuteScriptStream(string scriptName,

string functionName,

string[] parameters,

out string mimeType)

Parameters

string scriptName - indicates the script to execute.

string functionName - indicates the function in theMediaScript to execute.

string[] parameters - represent the array of strings that you would like to pass to your script.
Each string must be of the form name=value. This is equivalent to everything that you would
normally pass on a MRL after the function name.

out mimeType - an output parameter that will be populated with themime-type of the bytes
returned.

MediaGenWebService ExecuteScript Method

This method may be used with scripts that cache or stream their responses. If the response is
cached, the out parameter path will indicate where. If the response is streamed, the out parameter
mime-type will indicate themime-type and the out parameter buffer will contain the data.

20

MediaRich CORE 6.2 • Programmer's Guide

Syntax

int ExecuteScript(string scriptName

string functionName,

string[] parameters,

out string path,

out string mimeType,

out byte[] buffer)

Parameters

string scriptName - indicates the script to execute.

string functionName - indicates the function in theMediaScript to execute.

string[] parameters - represent the array of strings that you would like to pass to your script.
Each string must be of the form name=value. This is equivalent to everything that you would
normally pass on a MRL after the function name.

out string path - returns a file path to the image.

out string mimeType - an output parameter that will be populated with themime-type of the
bytes returned.

out byte[] buffer - returns the image as an array of bytes.

Example

This example shows how a user would use theMediaGenWebService after adding aWeb reference to
it in a C# project.
<code>

try

{

//init

int i = 0;

string mimeType = "";

//create the web service

localhost.MediaGenWebService mgws = new localhost.MediaGenWebService();

//create parms string[]

parms = new String[3];

parms[0] = "args=200";

parms[1] = "nc=1";

parms[2] = "text=" + i.ToString();

//call the web service

21

CHAPTER 2 MediaRich Client APIs

byte[] buf = mgws.ExecuteScriptStream("eq/test4.ms", "foo", (string[])parms, out
mimeType);

//write the image to disk string

imgPath = "chewie" + i.ToString() + ".jpg";

FileStream fs = new FileStream(imgPath, FileMode.OpenOrCreate);

BinaryWriter w = new BinaryWriter(fs);

w.Write(buf); w.Close();

}

catch(Exception ex)

{

}

</code>

Note: There are several System parameters that can be used for special situations. For more
information on System parameters see “Post-Processing Parameters” on page 27.

COM Client API

TheMediaRich server can be integrated into any stand-alone orWeb application through the
MediaRich COM client. Examples of languages that support a COM binding include JavaScript, VB,
VBScript, C, C#, and Perl.

Registering the MediaGenClient DLL
TheMediaGenClient DLL (MediaGenClient.dll) is installed when you install MediaRich. It is
located in the \Equilibrium\MediaRich All Media Server\MediaRich APIs\COM API

directory.

To register the MediaGenClient DLL:

1. Copy theMediaGenClient.dll to themachine where you intend to run the COM API.

2. Open a command prompt.

3. Navigate to the directory where the copied MediaGenClient.dll is located.

4. Enter the following command:
regsvr32 MediaGenClient.dll

This should register theMediaGenClient.

Important: Upgraded systems may need to repeat part of this process that was performed with
the previous version ofMediaRich.

22

MediaRich CORE 6.2 • Programmer's Guide

Using the MGClient COM Interface
Using theMGClient COM interface to create and execute requests requires the following:

• Create an instance of theMGClient object
• Add the appropriate parameters for theMediaScript that will be called
• Call the ExecuteScript()method

If theMediaGenerator is streaming the data back to the client, write the return data to a location of
your choice by calling SaveBuffer().

If theMediaGenerator is returning cached data, examine the Path property for the file path to the
returned data.

Creating the MGClient Object

Before issuing requests with theMGClient object, you must instantiate one. In order to do that you
will have to specify the ObjectID, which has the form servername.typename. The ObjectID for the
MGClient object is MediaGenClient.MGClient.

For example, if you were instantiating theMGClient object in JavaScript, you would invoke the
ActiveXObject constructor and pass in the ObjectID:
var mgc = new ActiveXObject("MediaGenClient.MGClient");

When you have created a MGClient object, you can access its properties and call its methods to
create and execute a request.

Creating and Executing a Request

When you have created a MGClient object, you formulate the request by setting properties of the
client object and calling the object’s setParameter()method. The amount of information you
must provide in the request will depend upon the function you are calling. Most properties have
default values. Only the ScriptName parameter is required in all requests.

When the request has been properly formulated, a call to the ExecuteScript()method will
dispatch the request to theMediaGenerator.

Request parameters

The parameters that are passed to theMediaScript function aremanaged with themethods
provided by theMGClient:

• GetParameter()

• SetParameter()

• RemoveParameter()

There are several System parameters that can be used for special situations. For more information
see “Post-Processing Parameters” on page 27.

23

CHAPTER 2 MediaRich Client APIs

MGClient Properties

TheMGClient object supports the following properties:

Property Type Description

HostName Read/write Allows the user to set the hostname of the MediaRich
server to be accessed. The default is localhost.

Port Read/write Allows the user to set the connection port on the
MediaRich server. The default is 9877.

ImageServerRoot Read/write Allows the user to set the imageServerRoot to
correspond with the MediaRich server being
accessed. The default is /mgen.

ScriptName Read/write Allows the user to set the name of the script to
execute. This property is required — it has no default
value.

FunctionName Read/write The function name to execute in the MediaScript file.
The default is main().

MimeType Read-only If this property is set after calling the
ExecuteScript()method, it indicates that the
server has sent back a binary response and this is its
mime type.

Buffer Read-only Access this property to get the raw data returned by
the MediaGenerator.

BufferAsString Read-only Access this property to get the data returned by the
MediaGenerator as a string. If the MIME type of the
data begins with something other than text/ you
will get NULL/Undefined/Nothing.
The data returned must also be UTF-8 encoded (since
ASCII is a subset of UTF-8, it is also OK).

Path Read-only If this property is set, the server caches the response
and returns the path to the cached file.

Timeout Read/write Allows the user to set the timeout for socket send
and receive operations. The default is -1 (the same
as the system’s default time-out).

MGClient Methods

TheMGClient object supports the following methods.

24

MediaRich CORE 6.2 • Programmer's Guide

void ExecuteScript()

Sends a request to execute a script to theMediaGenerator. If there is an error an error will be
thrown. If the request succeeds and a binary response has been streamed, the MimeType property
will be set appropriately and the user may call SaveBuffer(). If the request succeeds and the
response has been cached on the server the Path property will be set.

Note: Each time this function is called, it resets the MimeType, Buffer, and Path to
NULL/Undefined/Nothing.

string GetParameter(string key)

Gets the value of a parameter by key from the parameters collection.

void SetParameter(string key, string value)

Sets the value of a parameter by key from the parameters collection.

string RemoveParameter(string key)

Removes a parameter by key from the parameters collection. Returns the value of the removed key.

void SaveBuffer(string path)

Saves the response buffer that was streamed back from the server as the result of an
ExecuteScript() call to disk. Pathmay be any valid win32 path.

The MediaGenerator Response
After the ExecuteScript()method is invoked theMediaGenerator will respond. Responses fall
into two broad categories, error and success. Success responses may be further subdivided into
cached and streamed responses.

If an error response is received, theMGClient object will produce an error most natural for the
language which instantiated the object. In most languages that means theMGClient object will
throw an error which may be handled with a try catch block. In languages that don't support
try/catch semantics an error will be returned.

If a success response is received, the read-only MimeType and Path properties should be accessed
to determine the success of the response. If the MimeType is populated then the client has received
a binary stream, which can be written to the disk by calling the SaveBuffer()method. If the Path
property is populated then theMediaGenerator has cached the response and the value of the Path
property will tell you where.

In general the user-defined MediaScript function decides what the script will return and
consequently what sort of response theMGClient object will receive. If the user-defined MediaScript
function caches the response, you can override that decision when using theMGClient object by
setting the System parameter nc to 1. For more information about how to write and control what is
returned from aMediaScript see “MediaScript Response Types” on page 61.

25

CHAPTER 2 MediaRich Client APIs

MGClient example

The following C# code demonstrates making a MediaRich request that returns an image.
using System;

using MEDIAGENCLIENTLib;

public class TestCom

{

public static void Main(string[] args)

{

try

{

// Create a MGClient object

MGClient mgc = new MGClient();

// Set the Media Generator to talk to

mgc.HostName = "Dev2";

// Set up the request (these are Script

// parameters)

mgc.ScriptName = "eq/demos/colorize/Color.ms";

mgc.SetParameter("img", "shoes.psd");

mgc.SetParameter("width", "400");

mgc.SetParameter("height", "100");

mgc.SetParameter("color", "0x00ff00");

// Cause the result to be spooled back to us

// instead of being put in the cache (this is

// a System parameter)

mgc.SetParameter("nc", "1");

// Execute the request

mgc.ExecuteScript();

// Save the result to disk

mgc.SaveBuffer("shoes.jpg");

Console.WriteLine("Got shoes.jpg");

}

catch (Exception e)

{

Console.WriteLine(e.ToString());

}

26

MediaRich CORE 6.2 • Programmer's Guide

}

}

Using Request Parameters

By applying an operation at the request level, you can use a singleMediaScript file multiple times,
which reduces the number of files to manage and update. For example, using the is parameter in an
MRL, you can use a singleMediaScript file to create a thumbnail image, a full-sized image, and a
cropped and enlarged version. More importantly, by updating that oneMediaScript file, you
automatically update all of the images that call it.

You can use post-processing arguments to perform simple operations on a source image without
writing a MediaRich script. This is why the script path in a MediaRich request can be replaced with an
image path. If the supplied path is an image path rather than a script path, then that image is simply
returned to the caller. The post-processing parameters are applied to that image before it is
returned.

Additionally, you can use pre-process parameters to specify the loading of the file and other
parameters to retrieve file information and set caching.

Post-Processing Parameters
If a MediaRich request will result in an image (such as a JPEG or GIF), you can add parameters to the
request to apply post-processing on that image before it is returned to the caller. Available post-
processing operations include cropping, scaling, and image type conversion. For example, you can
achieve identical scaling results using the is parameter in theMRL as you can using the scale()
function in a script.

The following illustration demonstrates the use of these additional parameters in an MRL. They are
appended to themain body of theMRL after the arguments and use the same ampersand (&)
separators.

This section describes the following parameters:

• The Crop Parameter
• The Image Size Parameter

27

CHAPTER 2 MediaRich Client APIs

• The Slice Parameters
• The User Profile Information Parameter
• The Convert Parameter
• The Zoom Parameter
• The Grid-Zoom Parameter

For additionalMediaRich parameters that can be specified in a request, see “MRL Parameters” on
page 14.

The Crop Parameter

You can use the crop (cr) parameter to apply a crpo operation to the image (generated by the
MediaScript file) by specifying x,y coordinates (in pixels) for the top-left and bottom-right corners of
the desired, resulting image.

Syntax

cr=top,left, bottom,right

Example

http://www.eq.com/mgen/makeimage.ms?args=1&cr=85,25,260,150

This MRL takes the image generated bymakeimage.ms and crops it. The cropped image uses the
coordinates 85, 25 as the new top-left corner, and 260, 150 as the new bottom-right corner.

Note: All coordinates are based on the original top-left corner being 0,0.

The Image Size Parameter

You can use the images size (is) parameter to specify the final image size and color (optional) of the
response image in theMRL with the is parameter. You can also add a pad color to maintain the
original aspect ratio; the pad color fills in the unused space.

28

MediaRich CORE 6.2 • Programmer's Guide

For example, by specifying is=300,200MediaRich will scale the image to a width of 300 pixels and a
height of 200 pixels.

Syntax

is=width,height,[hexadecimal value]

Example

http://www.mediarich.com/mgen/makeimage.ms?args=1&is=300,200

This MRL takes the image generated bymakeimage.ms and resizes it from its original size to the size
specified by the is parameter. In this case, the original image was 346 pixels by 255 pixels, and the
resized image is 300 pixels by 200 pixels. Since 346 x 255 does not map exactly to 300 x 200, there is
some distortion in the resulting image.

You can constrain the dimensions of the resized image to avoid distortion by specifying a
hexadecimal RGB value for the pad color. As shown in the illustration below, the new image
preserves the original aspect ratio, with the pad color filling in the areas that extend beyond the
resized image.

29

CHAPTER 2 MediaRich Client APIs

The Slice Parameters

TheMRL syntax for slice defines how an image is divided into equal pieces using columns and rows,
and which piece of the image is returned. The slice table (st) specifies the number of rows and
columns into which the image is divided. The slice position sp parameter specifies the piece of the
sliced image to be returned to the browser (row, column).

Syntax

st=total_rows, total_columns

sp=specific_row, specific_column

Example

http://www.eq.com/mgen/makeimage.ms?args=1&st=3,3&sp= 1,1

This MRL takes the image generated bymakeimage.ms and delivers a slice of that image based on
information passed in theMRL. The st parameter slices the image into three rows and three
columns. The sp parameter specifies that the portion of the image contained in row 1, column 1 be
returned.

30

MediaRich CORE 6.2 • Programmer's Guide

Note: The sp parameter is based on the upper left corner of the image being row 0, column 0.

The User Profile Information Parameter

Use the user profile p parameter to adjust image color and quality for a specific viewing device based
on the quality and bit depth for that device.

Syntax

p=<device_name>

p=<quality:bit_depth>

Definitions for the profile parameters and the behavior of the p= operation are defined in the script
ProfileScript.ms in the MediaRichCore/Shared/Originals/Sys directory. Definitions for
additional profile types can be added to this script.

Note: The quality field applies only to JPEG images. If you specify a bit depth of 8 or less, the
image is converted to GIF. JPEG supports only 24 bits per pixel or 8-bit grayscale, while GIF
supports only 8-bit and smaller.

Example

http://www.mediarich.com/mgen/makeimage.ms?args=1&p=Palm

This MRL takes the image generated by themakeimage.ms and optimizes it for viewing on a Palm
device.

The Convert Parameter

You can use the convert (cvt) parameter to specify the file type for the returned file.

31

CHAPTER 2 MediaRich Client APIs

Syntax

cvt=file type

The Zoom Parameter

Use the zoom zm parameter to zoom in or out and pan left, right, up, or down within an image.

Syntax

zm=width, height, zoomlevel, x-coordinate, y-coordinate

Example

The following MRL generates a scaled image of the top-left quadrant of the original image.
http://localhost/mgen/merchandizer/sample.jpg?zm=300,300,2,0,0

The Grid-Zoom Parameter

Use the gz parameter to apply a thumbnail grid as a navigational tool for displaying a zoomed
portion of the image. The zoom level is one level higher than the displayed image.

Syntax

z=x-grid,y-grid, fraction, width, height, x, y

Example

The following MRL generates an unzoomed grid-zoom image with three grid spaces in each direction.
The grid preview occupies 25% of the display area, which is 375 pixels wide and 450 pixels tall.
http://localhost/mgen/merchandizer/sample.jpg?gz=3,3,0.25,375,450,1,1

Pre-Process Parameters
The pre-process parameters are added to the load command, so if the particular format does not
support them, they will just be ignored.

Since these parameters are used during load, all other post-processing parameters (cr, is, cvt, st,
sp, gz, zm, zmp) can still be added to theMRL. In some cases (like PDF, that some browsers don't
handle) it could be required to add "&cvt=jpeg" or “cvt=png”.

Page (pg)

Using this parameter, you can request a particular page from a multi-page file. It has an alias: fm
(frame). It defaults to 1.

The following request will return page 5 of the file sample.pdf as a PNG image:
http://localhost/mgen/sample.pdf?pg=5&cvt=png

32

MediaRich CORE 6.2 • Programmer's Guide

Resolution (res)

Use this parameter to request that when a particular file is rendered into a bitmap image, it will be
rendered at particular resolution. It has an alias: dpi (dots per inch). It defaults to 300.

The following request will return page 5 of the file sample.pdf rendered at 200 DPI as JPEG image:
http://localhost/mgen/sample.pdf?pg=5&res=200&cvt=jpeg

.

Inquire and Load Parameters
Get Image Size (gis)

Use this to retrieve text with image size in the format: “width,height”. It takes a single parameter,
which is the image path.

The following request:
http://localhost/mgen?gis=merchandizer:/sample_h.jpg

will return:
3517,2268

Merchandizer includes an example of its use (MediaRich Merchandizer/Samples/Html/zoom_

flash), where a Flash Zoom object needs to know the size of the image in order to compute the
area of the image to be requested from MediaRich at current zoom level and pan position.

Load Page with Resolution (lpr)

Given a multi-page document, it loads the specified page with specified resolution, saves it as a JPEG
image in the cache, and returns a path to the cached image and total number of pages in the
document. It takes three parameters (separated by commas):

• image path (required)
• page number (optional, defaults to 1)
• resolution in DPI (optional, defaults to 300)

The following request:
http://imac.home/mgen?lpr=merchandizer:/MRU_AdminGuide.pdf,1,300

will return:
OK:cache:/LoadPageRes/MRU_AdminGuide-page1-300dpi.jpg,56

At this point you should check that the first two characters are “OK” and if so, extract the path
beginning at character 3, such as the following example:
if (httpRequest.responseText.substring(0,2) == "OK")

{

var fileInfo= httpRequest.responseText.substring(3).split(“,”);

var loadedPagePath = fileInfo[0];

var numPages = fileInfo[1];

33

CHAPTER 2 MediaRich Client APIs

}

Merchandizer includes an example of its use (MediaRich Merchandizer/Samples/Html/zoom_

flash/FlashZoomPageRes.html), where JavaScript code loads requested pages from a mutli-
page PDF file.

Cache Control Parameters
Parameters can be added to a MediaRich request that control how the results of the request will be
cached, both within theMediaRich internal cache and in externalWeb caches.

This section describes the following parameters:

• The Time-To-Live Parameter
• The No Cache Parameter
• The Cache Control Parameter

For additionalMediaRich parameters that can be specified in a request, see “MRL Parameters” on
page 14.

The Time-To-Live Parameter

The Time-to-live (tl)parameter sets the lifetime for an image in theMediaRich cache. MediaRich
keeps the generated image in the cache for the number of specified days, after which it is
automatically cleared from the cache.

To prevent an image from being removed at the time specified in the global Time-to-live parameter,
specify 0 days (tl=0) in the request.

Note: The Time-to-live parameter in a request overrides the global time-to-live setting in the
MediaRich administration utility. For more information, refer to theMediaRich
CORE Installation and Administration Guide.

Syntax

tl=days

Example

In the following example, the object will remain in the cache for seven days, and four hours:
http://www.medirich.com/mgen/makeimage.ms?args=1&tl=7%2E166

The No Cache Parameter

Specify the no cache (nc) parameter to 1 to disable caching, which causes any generated image to be
streamed back to the caller instead of being placed in the cache. The ncMRL argument also accepts a
comma-delimited list of parameters to ignore when computing the cache path. Changing the value of
parameters included in this list has no effect on the cache path and does not result in generating a
new image, but returns any cached image created using previous values of these parameters.

34

MediaRich CORE 6.2 • Programmer's Guide

Syntax

nc=1

Example

If an image is generated with the following:
http://<server>/mgen/test.ms?text=%20test%20&date=%2004/01/2007%20&nc=date

The following subsequent request:
http://<server>/mgen/test.ms?text=%20test%20&date=%2004/02/2007%20&nc=date

returns the cached image for the previous request, generated using a date parameter of 04/01/2007.

This is intended to be used to pass administrative arguments on theMRL that are not directly
involved in image generation, such as access tokens.

The Cache Control Parameter

The cache control (c)parameter allows standard cache control directives to be added to a MRL. These
directives are used by external cache devices (for example, c=no-cache).

For more information, refer to the appropriate section of theWC3 specification for HTTP/1.1
(http://www.w3.org/Protocols/rfc2616/rfc2616- sec14.html#sec14.9).

Syntax

c=directive

Job Priority Parameter
Use the job priority (jp) to specify the prioritization of the job directly in theMRL. Possible values for
this parameter are "low", "medium", and "high".

• low – a low priority job (currently equals a priority of 7)
• batch – a batch job (currently equals a priority of 5)
• normal – normal job (current equals a priority of 3)
• high – high priority job (currently equals a priority of 1)
• [0 thru 7] – sets the priority to that numeric value

If no jp value is specified, or if its value is not one of the valid values above, the job runs at “normal”
priority.

35

CHAPTER 3

Using MediaScript

36

All MediaRich scripts are written in MediaScript, an interpreted scripting language based on the
ECMAScript Language Specification, 3rd edition (which, in turn, is based on Netscape’s JavaScript and
Microsoft’s JScript). By building on top of a widely known scripting language, MediaScript can offer
all the flexibility of a full programming language while remaining easy to use.

MediaScript supports all of ECMAScript’s syntax and objects while adding several new objects and
language enhancements. This chapter describes only those features unique to MediaScript; for a
detailed description of the basic language, refer to the ECMAScript Language Specification (available
at http://www.ecma-international.org/publications/standards/Ecma-262.htm) or one of themany
available JavaScript references.

Chapter summary

“TheMedia Object” on page 37

“Preprocessor Directives” on page 37

“Named Arguments” on page 38

“File Systems” on page 39

“MediaScript Error Handling” on page 46

http://www.ecma-international.org/publications/standards/Ecma-262.htm

MediaRich CORE 6.2 • Programmer's Guide

The Media Object

Themost important object in MediaScript is theMedia object, which implements image processing
features provided by MediaRich. A typical script creates one or moreMedia objects, then loads an
image data from a file or using Media drawing methods. The script then performs additional image
processing operations based on arguments and parameters in the request. Finally, the script
generates a response by saving a Media object to the desired output file format.

For example, a script to scale an imagemight look like the following:
function main(imageName, width, height)

{

var img = new Media();

img.load(name @ imageName);

img.scale(xs @ width, ys @ height, alg @ "best");

img.save(type @ "jpeg");

}

For a complete description of all of themethods provided by theMedia object, see “MediaScript
Objects and Methods” on page 48.

Preprocessor Directives

Preprocessor directives are lines included in the code of programs that are not program statements
but directives for the preprocessor. These lines are always preceded by a hash tag (#), are processed
before the rest of the script, and can affect the way the script commands are interpreted.

The preprocessor directives extend only across a single line of code. As soon as a newline character is
found, the preprocessor directive is considered to end. No semicolon (;) is expected at the end of a
preprocessor directive. The only way a preprocessor directive can extend through more than one line
is by preceding the newline character by a backslash (\).

The following sections describe the preprocessor directives are used in MediaScript.

The MediaScript #include Directive
The #include directive allows other scripts to be included as if they were part of the original script.
It takes a string (in quotes) representing the path of the script to include. The string must be
enclosed in double quotes.

Syntax

#include "path to the included file"

Example

#include "scripts:mylibrary.ms"

37

CHAPTER 3 Using MediaScript

To use the XmlDocument object, #include the xml.ms:
#include "sys:xml.ms"

The MediaScript #link Directive
The #link directive allows to load precompiled objects, functions and data defined in a dynamic
library (DLL). The directive takes a string (in brackets) representing the path of the file to load. When
you use one of the libraries that ship with MediaRich (in theMediaRichCore/Bin/MediaEngine
folder), you can omit the path (it defaults to “devices:”) and extension (it defaults to “.mdv”).

Syntax

#link <path to the library file>

Example

#link <EMailer>

Named Arguments

When reading theMedia object reference in the next chapter, you will see that many of the object
methods use an argument notation of the form:
argName @ argValue

The reason for this notation is that thesemethods often have a long list of optional (and sometimes
mutually exclusive) arguments. The save()method, for example, has sixteen arguments, many of
which only apply to certain file formats. Moreover, adding a new file format plug-in to the system can
add even more arguments. Because of this, certain methods take a set of name/value pairs rather
than the standard positional argument list.

MediaScript introduces the at operator (@) to simplify named arguments, as in the following:
(argName1 @ argValue1, argName2 @ argValue2, …)

For example, if you have a Media object named img and you want to save the contents to a JPEG file
named out.jpg at 90% quality, theMediaScript command looks like the following:
img.save(name @ "out.jpg", quality @ 90);

Note: You cannot mix positional parameters and parameters passed with the@ argument in
the samemethod call.

All functions that use named arguments also accept a single object as an argument. If an object is
passed, each of the object’s properties corresponds to an argument name/value pair; the property
name is the argument name and the property value is the argument value. For example, the
previous MediaScript could be rewritten as the following:
var argsObject;

argsObject.name = "out.jpg";

argsObject.quality = 90;

38

MediaRich CORE 6.2 • Programmer's Guide

img.save(argsObject);

The advantage of passing an object is that it can be reused across multiple calls.

As a final option, you can use ECMAScript’s standard object literal syntax to pass a temporary,
anonymous object. In this case, theMediaScript would be rewritten as:
img.save({name: "out.jpg", quality: 90});

File Systems

TheMediaRich ECM for SharePoint server implements its own virtual file system for reading and
writing data. This file system is fully customizable allowing advanced installations the ability of
defining various input and output repositories for specific purposes.

MediaRich CORE was designed to support large clusters of servers to maximize performance and
reliability. There are two deployment scenarios for a MediaRich cluster. In one scenario, all of the
servers share a common file system with shared properties, originals, and generated output files. In
the other scenario, each MediaRich server maintains separate storage and an external mechanism is
used to duplicate and synchronize originals across all of the servers. In either case, as a script
developer you can write your scripts once without worrying about the details of each server’s file
system layout.

File System Specifiers (Virtual File Systems)
MediaRich accesses files by defining a number of virtual file systems. A virtual file system (VFS)
indicates the root of a file tree located somewhere on either the local file system or on the network.
When referencing a file via a virtual file path, the virtual file system on which the file is located is
specified by prepending the virtual file system name followed by a colon onto the path to that file,
such as the following:
scripts:/path/script.ms

Virtual File System’s namemust start with an alphabetical character and contain only alphanumeric
characters (punctuation marks are not allowed). Most file system specifiers are simply aliases for
local or shared directories. The following built-in specifiers are located in theMediaRichCore/
directory:

File System Specifier Default Location

cache Shared/Generated/MediaCache

dependencies Shared/Generated/Dependencies

devices Bin/MediaEngine

fonts Shared/Originals/Fonts

glogs Shared/Logs

39

CHAPTER 3 Using MediaScript

File System Specifier Default Location

logs Shared/Logs/<hostname>

output Shared/Generated

profiles Shared/Originals/Profiles

read (scriptPath);Shared/Originals/Media

results Shared/Generated/MediaResults

scripterrors Shared/Generated/ScriptErrors

scripts (scriptPath);Shared/Originals/Scripts

sys Shared/Originals/Sys

temp Temp

write (scriptPath);Shared/Originals/Media

where (scriptPath) is the path to the currently executing script.

In case ofmultiple paths, MediaRich will first search all paths for an existing file and if it finds it, it will
use it. If it does not find it, it will create it in the first path.

All MediaScript operations that take a path default to a reasonable file system when no specifier is
present in the path. The following table lists these defaults:

MediaScript operation Default file system specifier

Loading a script scripts

Loading a library devices

Loading a color management profile profiles

Saving a media file results

All other read operations read

All other write operations write

For example, the following MediaScript:
img.load(name @ “bike.tif”);

is equivalent to:
img.load(name @ “read:/bike.tif”);

SomeMediaScript file systems are not based on the standard disk file system. The mem specifier uses
an abstract file system that is contained entirely in memory and is never written to disk, which is
useful for fast access to temporary file data. The FSNet plug-in implements the ftp and http
specifiers, which allow files to be accessed using FTP and HTTP URLs respectively.

40

MediaRich CORE 6.2 • Programmer's Guide

Virtual File System
A Virtual File System (VFS) assigns a symbolic name to a directory on theMediaRich server.
MediaRich accesses both local and remote storage solely through symbolic VFS names. Defining a
VFS allows MediaRich to access a particular place on its local filesystem or on a network.

A VFS definition controls what MediaRich is allowed to do on that part of the filesystem. MediaRich is
able to read from any defined VFS. A VFS definition can, however, either allow or deny write access to
the portion of the filesystem it points to. Likewise, it can either allow or deny the execution of scripts
from that portion of the filesystem.

Using theMediaRich CORE Administration Utility, you can define any number of VFS directories for
use in job submissions.

Note: If you expect to causeMediaRich to write files to a VFS directory, that directory must
have its permissions set so that MediaRich has read and write permissions for all folders and
sub-folders below the root of the VFS.

To define a Virtual File System:

1. In theMediaRich Server Options dialog, click the Virtual Filesystems tab.

2. Click the New VFS button.

3. In the Edit VFS dialog, enter a name for the VFS and its path.

You can assign a name for the VFS according to your needs. You then specify the path of the
directory you want to associate with this VFS. This path must be valid from the server’s
perspective, not from the perspective of how that same directory might bemounted on the
network.

4. If you want to create a read-only directory that theMediaRich Server can use as a source
directory but not as a save directory, clear theWritable checkbox.

TheWritable checkbox is selected by default, so if you want to create a standard read/write VFS
directory leave this option selected.

The Executable checkbox determines if scripts can be executed on this filesystem. This option is
disabled by default. Enable this option if you want to storeMediaScript script files on this
filesystem that MediaRich can execute.

41

CHAPTER 3 Using MediaScript

The Sentinel checkbox is required in order for the server to share files with clients. If you aren’t
sure if you need this option enabled, leave it enabled.

5. Click OK to set the newVFS definition.

To change or remove a VFS definition, select it in theMediaRich Server Options dialog and click Edit
or Remove.

HTTP/FTP Support Using the FSNet Plug-In
The FSNet plug-in can implement HTTP and FTP access via standard URLs by defining virtual
filesystems named http and ftp. Since normal HTTP and FTP URLs consist of these names followed
by a colon and then followed by a file path, normal HTTP and FTP URLs are valid MediaRich virtual file
paths.

In addition to the default http and ftp filesystems, it is possible to set up other filesystems that
refer to resources on HTTP and FTP servers. These URLs would look the same as the standard URLs
except that the http or ftp keys at the beginning of the URLs would be some other name to specify
that an alternate filesystem is being accessed. For more information about defining additional HTTP
and FTP filesystem, see “Defining Additional FSNet Virtual Filesystems” on page 45.

For HTTPS, simply specify port 443 in the path for your Media.load() op, like: image.load
(name @ "http://www.google.com:443/images/srpr/logo11w.png");

Note: This only affects theWindows version because it uses the OS-provided HTTP services.

Enabling Standard HTTP and FTP URL Access

To allow standard HTTP URLs to be passed to MediaRich as file paths, add the following line to the
local.properties_user file:
filesystem.fsnet.http.specifier=http

To allow standard FTP URLs to be passed to MediaRich as file paths, add the following line to the
local.properties_user file:
filesystem.fsnet.ftp.specifier=ftp

filesystem.fsnet.ftp.ftp=1

HTTP and FTP URLs

There are a number ofMediaScript methods, such as theMedia object load() and save()
methods, that accept file paths as parameters. The paths passed as parameters to thosemethods
will often be paths to files on the local filesystem, but can also refer to resources on a network via the
HTTP and FTP protocols.

By enabling standard HTTP and/or FTP URLs as described in the previous section, references to files
on HTTP and FTP servers take the same form as standard URLs used to access those files via a Web
browser. All of the information normally encoded in HTTP and FTP URLs can be passed to MediaRich.
MediaRich will use the supplied information to connect to the specified network resource.

42

MediaRich CORE 6.2 • Programmer's Guide

A fully specified HTTP or FTP URL looks like the following:
(http|ftp)://<username>:<password>@<server name>:<port>/
<path to resource>

The <username>, <password>, and <port> portions of the URL are optional. Here are some
examples of well-formed URLs:
http://www.eq.com/images/eq_bw.gif

http://joe:abcdefg@acomputer/myimages/blah.jpg

ftp://ftpserver:1234/public/images/camera.tif

FSNet Properties

A number of properties can be set in the local.properties_user file to influence the behavior of HTTP
and/or FTP requests. These properties can be specified such that they affect all FSNet filesystems or
so that they affect only a single filesystem.

To set a property that affects all FSNet filesystems, specify that property as follows:
filesystem.fsnet.<property name>

To set a property to only affect a single virtual filesystem, specify the property as follows:
filesystem.fsnet.<virtual filesystem name>.<property name>

The following example sets up a proxy host for all FSNet filesystems:
filesystem.fsnet.ProxyHost=ourproxyhost:3322

The following example sets the user name and password for just FTP access:
filesystem.fsnet.ftp.UserNameAndPassword=joe:tokyo

The specific properties that affect FSNet’s operation are described in the following subsections. As
you read this information, remember that each of these properties can be specified such that they
affect a single virtual filesystem, single protocol (http OR ftp), or all FSNet filesystems/both
protocols (http AND ftp).

FSNet Authentication

Authentication is performed by supplying a user name and password to HTTP and FTP requests.
These values can be supplied in the URL, as described in the previous section. They can also be set
globally so that all HTTP and/or FTP requests use the same user name and password. This is done
using the UserNameAndPassword property.

The following are two examples, one that sets a user name and password for all FSNet filesystems,
and another that sets them only for FTP access:
filesystem.fsnet.UserNameAndPassword=joeblow:tokyo

filesystem.fsnet.ftp.UserNameAndPassword=tomjones:apassword

FSNet File Caching

The process of reading a file over a network can be time consuming. For this reason, files read via the
FTP and HTTP protocols are stored in a local file cache. Subsequent accesses to the same file that

43

CHAPTER 3 Using MediaScript

occur shortly after the file was last downloaded are served from the cache rather than reread from
the network.

The RefreshInterval property determines howHTTP and FTP files are cached. This value is
interpreted as a time interval in seconds and indicates how often MediaRich should check with a
HTTP or FTP server to determine if a newer version of a file exists. The default value of this property is
900, or 15minutes. If the value of the RefreshInterval property is set to a negative value, then
caching is disabled and every HTTP or FTP request retrieves a file from the network.

Unless caching has been disabled, caching behavior works according to the following sequence of
events whenever a file is requested via HTTP or FTP:

MediaRich first looks to determine if the same file exists in the local cache.

• If the file does not exist in the cache, MediaRich fetches the file.
• If it does exist, MediaRich computes the age of that file (how long it has been since that file was

last updated).
• If the age of the file is less than that specified using the RefreshInterval property,

MediaRich uses the cached file.
• If the age of the file is greater than that specified using the RefreshInterval property,

MediaRich contacts the HTTP or FTP server to determine whether a newer version of the file
exists.

• If a newer version does exist,MediaRich downloads a new copy of the file to the cache.
• If a newer version does not exist, the age of the file in the cache is simply reset to 0. In all cases,

the cached file is eventually returned to the caller.

This example disables file caching for FTP accesses:
filesystem.fsnet.ftp.RefreshInterval=-1

And this example refreshes interval for both HTTP and FTP accesses to fiveminutes:
filesystem.fsnet.RefreshInterval=300

FSNet Proxy Server Support

To route HTTP and FTP file requests through a proxy server, use the ProxyHost property. A proxy
host specification consists of a host name and port number, separated by a colon.

The following is an example that designates that FTP and HTTP requests should be routed to port
#1133 of the server named ourproxyserver.ourcompany:
filesystem.fsnet.ProxyHost=ourproxyserver.ourcompany:1133

Note: AWS S3 object storage and AZURE object datalake support is now available - See
programmers guide for details on utilizing these new file access objects.

44

MediaRich CORE 6.2 • Programmer's Guide

Defining Additional FSNet Virtual Filesystems

Any number of virtual filesystems can be defined in addition to standard http and ftp filesystems.
The only reason to define additional HTTP or FTP filesystems would be to associate different property
settings with the different filesystems.

For example, if you needed to access network files via two different proxy servers, you would need
two different filesystems, as the proxy server can not be specified in a virtual file path (in a URL).
Another reason to define additional filesystem would be to associate different user names and
passwords with each filesystem, or to differ the caching behavior between filesystems.

To define a HTTP filesystem, only the specifier property is required. The following is an example
that defines a newHTTP filesystem namedmedia and sets the default user info for that filesystem:
filesystem.fsnet.media.specifier=media

filesystem.fsnet.media.UserNameAndPassword=joeblow:tokyo

A file path to a resource on this filesystem would look like this:
media://www.apple.com/images/applelogo.jpg

To define a FTP filesystem, the ftp property must be specified to indicate that the filesystem should
use the FTP protocol. The following is an example that defines a new FTP filesystem named bar that
has caching disabled:
filesystem.fsnet.bar.specifier=bar

filesystem.fsnet.bar.ftp=1

filesystem.fsnet.bar.RefreshInterval=-1

The name of the filesystem, as specified after the fsnet portion of property name, need not match
the value of the specifier property. The filesystem name is used to refer to the filesystem in the
properties file. The specifier defines what word appears at the front of a virtual file path to
indicate that filesystem. By convention, and for clarity, these two values should always be the same.

Configuring the FSNet File Systems

The FTP and HTTP file systems are disabled by default. To configure the file systems, you need to add
entries to the local.properties_user file. The basic entries required to enable both file systems are:
filesystem.fsnet.http.specifier=http

filesystem.fsnet.ftp.specifier=ftp

filesystem.fsnet.ftp.ftp=1

You can configure the following properties for FTP or HTTP:

Property Usage

Disabled Set to 1 to disable the file system, 0 to enable it

Specifier This is the path specifier that denotes this file system.

UserName Sets the default user name.

45

CHAPTER 3 Using MediaScript

Property Usage

Password Sets the default password.

UserNameAndPassword Sets the default username and password (separated by :).

FTP Set to 1 to use FTP protocol, 0 or no entry to use HTTP.

ProxyHost Set as ProxyServerNameOrIP[:port] to configure a HTTP
proxy server (HTTP only).

ResponseTimeout Specifies the amount of time to wait for a response from a
server before giving up.

LockTryDelay Specifies the amount of time to wait (in seconds) when a cache
file is locked.

MaxTries Specifies how many times to retry a locked cache file before
giving up.

BreakLockOnFailure Set to 1 to break a lock on a cache file, if it fails to become
available.

RefreshInterval Specifies how often (in seconds) to check the Web for a newer
file.

MediaScript Error Handling

Most MediaScript functions indicate an error condition by throwing an exception rather than
returning an error code. Exceptions can be trapped and handled using ECMAScript’s standard
try/catch/finally mechanism.

For example, theMedia object’s load()method throws an exception if the file to be loaded is not
found. To trap this exception, you would write something similar to the following:
try

{

img.load(name @ "missingFile.tga");

}

catch (e)

{

// Here you can recover from the error. Possible

// actions include loading a default image,

// logging an error, or returning a 404.

}

If an exception is thrown while executing your script and no catch block traps it, the script will
terminate immediately. By default the error is logged to the ScriptErrors.log file and returned to the
client as an error response. You can disable logging by setting the ScriptErrorLogging property

46

MediaRich CORE 6.2 • Programmer's Guide

to false in the global.properties configuration file. For HTTP clients, you can disable the returning
of the error response as HTML by setting the ReturnHtmlErrors property to false in
global.properties. If HTML errors are disabled, MediaRich will respond with a 500 Internal Server
Error status code.

47

CHAPTER 4

MediaScript Objects and Methods

48

MediaScript includes a number of built-in objects that you can use when writing scripts.

Chapter summary

“Working with Media Processing Functions” on page 49

“MediaScript Global Functions” on page 50

“Request and Response Global Objects” on page 54

“Media Object” on page 68

“File Object” on page 208

“XmlDocument Object” on page 221

“System Object and Methods” on page 220

“TextResponse Object” on page 223

“TextExtraction Object” on page 226

“IccProfile Object” on page 228

“Zip Object” on page 232

“Unzip Object” on page 233

“Emailer Object” on page 235

“Cubic Object (2D Interpolator)” on page 240

“The RgbColor Object” on page 241

“The CmykColor Object” on page 242

“The AWS Object” on page 243

“The Azure Object” on page 246

MediaRich CORE 6.2 • Programmer's Guide

Working with Media Processing Functions

MediaScript is able to execute a number ofMedia processing functions, or transforms, that you can
use to generate almost any type of graphic.

Each function has a specific syntax and most include specific parameters that you can use to provide
the information needed to execute the transform as desired. There are also generic parameters (non-
executing parameters and multi-frame parameters) that apply to all transform commands.

Note: MediaRich reads up to 16-bit per channel, and automatically converts 16bit per channel
down to 8-bit per channel before operations can be handled. The Photoshop reader also
converts 24-bit per channel High Dynamic Range images to 8 bits internally. Additionally, 32 bits
per channel, LAB and Pantone color space are currently not supported in 6.X MediaRich Server.

Non-Executing Media Process Parameters
All media transform commands can use the following two informational parameters:

ParamInfo - if specified, all the other parameters of the command are ignored. Instead, a list of the
legal parameters for that command are printed to the logfile (or screen).

ParamCheck - if specified, the specified function parameters are parsed and checked for legality and
any resulting errors are returned, but the command does not execute.

Multi-Frame Parameters
Multi-frame files (such as GIF and TIFF) are a special case, because the files contain more than one
image (frame). MediaScript supports a “frames” parameter that can be included with all transform
commands for processing specific frames within a multi-frame file.

frames - specifies a single frame, or a complex group of frames using a frame list. A frame list must
be enclosed in quotes, and allows a comma separated list of individual frames or ranges. You can
also specify a frame skip parameter to apply the relevant command to every nth frame.

Note: The first frame in a multi-frame file is frame 1.

Examples

This script flips the 5th frame:
image.load(name @ "clock.gif");

image.flip(axis @ "horizontal", frames @ "5");

image.save(name @ "flip5.gif");

This script flips the 1st, 5th, 7th, 8th, 9th, and 10th frames:
image.load(name @ "clock.gif");

image.flip(axis @ "horizontal", frames @ "1,5,7-10");

image.save(name @ "multiflip.gif");

49

CHAPTER 4 MediaScript Objects and Methods

This script flips the 4th, 6th, 8th, and 10th frames (every 2nd frame):
image.load(name @ "clock.gif");

image.flip(axis @ "horizontal", frames @ "4-10-2");

image.save(name @ "flipskip.gif");

MediaScript Global Functions
MediaRich and theMediaScript language supports all the basic ECMAScript capabilities, including
conditionals, variables, functions, and exception handling, as well as the proprietary image
processing functions. There are a number of commands and format options specifically related to
the 64-bit file size capabilities supported in MediaRich CORE 4.0.

For information on functions and objects not described in this guide, refer to the ECMAScript
specification at http://www.ecma-international.org/publications/standards/Ecma-262.htm or to a
JavaScript reference guide.

Note: The error() function is now deprecated. Use the standard JavaScript try..catch..finally
and throw syntax instead.

Global Methods

• batch.setJobStatus()
• clearCached(mrl)
• COMCreateObject()
• getPropertyValue()
• getScriptFileName()
• print()
• rgb()
• stringTrimBoth()
• stringTrimEnd()
• stringTrimStart()
• version()

batch.setJobStatus()

Sets the status message for the currently executing script. Currently, this message is displayed in the
Server Administration Server Status window, in the “Status” column, on the line associated with the
worker process that is processing the job. Refer to theMediaRich CORE Installation and
Administration Guide for information about the Server Status window.

Syntax

batch.setJobStatus(<string>);

50

http://www.ecma-international.org/publications/standards/Ecma-262.htm

MediaRich CORE 6.2 • Programmer's Guide

Example

This function, by default, displays a job status message that counts from 1 to 10, sleeping for one
second between updates to themessage. The number of repetitions and the sleep time can be
modified via MRL parameters.
function status()

{

// Determine the sleep time (in seconds)

var sleep = req.getParameter("sleep");

if (!sleep)

sleep = 1;

// Determine the iteration count

var count = req.getParameter("count");

if (!count)

count = 10;

// Do it!

for (var i = 1 ; i <= count ; i++)

{

batch.setJobStatus("Status: " + i);

System.threadSleep(sleep);

}

}

clearCached(mrl)

The clearCached(mrl) removes media specified by mrl from MediaRich cache.

Note: This method should not be confused with the clearCached method that is a member of
the File Object e.g. File.clearCached() that method helps you manage the FSNet cache.

Syntax

clearCached(<mrl>)

Parameters

mrl - the full MRL that originated the request for themedia object.

Example

clearCachedTest.ms

A new script to demonstrate and test the removal of a given item from theMediaScript cache.

Example of use:

http://localhost/mgen/clearCachedTest.ms?f=ClearCached&mrl=http://localhost/mgen/test
.ms

51

CHAPTER 4 MediaScript Objects and Methods

COMCreateObject()

Creates a COM object (Windows only).

Parameters

progId - specifies a string containing the friendly progID of the COM object.

getPropertyValue()

The getPropertyValue() function returns a string with the value of the named property. If the
named property does not exist, returns undefined. MediaRich includes two properties files that
specify various system settings. The files are: local.properties and global.properties. Using this
function, you can access properties in these files from within MediaScript.

Note: Properties are controlled by theMediaRich system administrator using theMediaRich
Administration Utility. Refer to theMediaRich CORE Installation and Administration Guide
for more information.

Syntax

getPropertyValue(<propertyName>);

Parameters

propertyName - string - property name in quotes. Property names consist of the filename in
which the property exists (excluding the extension), a period (.), and the actual property name.

Note: Property name information is case-sensitive.

Example

To access the LogLevel property in the local.properties files:
var logLevel = getPropertyValue("local.LogLevel");

If local.properties (or local.properties_user) file includes the following line:
LogLevel=severe

variable logLevel will contain the string “severe”.

getScriptFileName()

The getScriptFileName() function returns the filename of the currently running script.

Syntax

getScriptFileName();

52

MediaRich CORE 6.2 • Programmer's Guide

print()

The print() function prints the specified string to theMediaGenerator.log file with a severity level
set by the property local.PrintSeverity.

Syntax

print(<string>);

rgb()

The rgb() function converts the three supplied RGB color values into a 24-bit value (0 - 16,777,215)
that is suitable for many Media() graphic operation arguments.

Syntax

rgb(<red>,<green>,<blue>);

stringTrimStart()

The stringTrimStart() function returns a string with all whitespace characters removed from the
start of the string.

Syntax

stringTrimStart(<string>);

Parameters:

string - string from which whitespace is to be trimmed.

stringTrimEnd()

The stringTrimEnd() function returns a string with all whitespace characters removed from the
end of the string.

Syntax

stringTrimEnd(<string>);

Parameters

string - string from which whitespace is to be trimmed.

stringTrimBoth()

The stringTrimBoth() function returns a string with all whitespace characters removed from
both the end and start of the string.

Syntax

stringTrimBoth(<string>);

53

CHAPTER 4 MediaScript Objects and Methods

Parameters

string - string from which whitespace is to be trimmed.

version()

The version() function returns a string that is the current version ofMediaScript.

Syntax

version();

Request and Response Global Objects

For every request, MediaScript creates a global HTTP Request object named req and a global HTTP
Response object named resp.

The Request and Response objects do not need to be constructed. A static global instance of each is
created for each MediaScript execution context.

Request Objects
You can use the request object to get request parameters, HTTP headers, and information about the
MRL.

The req object includes the following methods:

• getBatchId()
• getBatchTempDir()
• getFileParamNames()
• getFileParamPath()
• getHeader()
• getHeaderNames()
• getJobId()
• getJobTempDir()
• getNotCached()
• getParameter()
• getParameterNames()
• getPath()
• getQueryString()
• getRequestURL()
• getScriptPath()

54

MediaRich CORE 6.2 • Programmer's Guide

getBatchId()

The getBatchId()method returns an integer identifying the batch. A batch is a collection of jobs
sent to theMediaGenerator through the .NET of Java APIs.

This identifier is unique only to a specific MediaGenerator. It is reset to start at 0 when the
MediaGenerator is started and is incremented by 1 for each batch request. For a description of the
MediaRich batch interface, see the .NET or Java API online documentation available in the SDK folder.
For non-batch requests, this identifier is always 0.

Syntax

var batchId = req.getBatchId();

Parameters

This function has no parameters.

getBatchTempDir()

The getBatchTempDir()method returns the path to a local temporary directory that is shared by
all jobs within a given batch. This directory may be used to share state between different jobs in a
given batch.

For a description of theMediaRich batch interface, see the .NET or Java API online documentation
available in the SDK folder.

Syntax

var tmpDir = req.getBatchTempDir();

Parameters

This function takes no parameters.

getFileParamNames()

The getFileParamNames()method returns an array containing the names of all file parameters.
File parameters describe files sent to theMediaGenerator through the .NET or Java APIs for
processing.

The names returned by this method can be used in conjunction with getFileParamPath() to
locate the files reference by the file parameters. These names are specified when the file is added as a
parameter to a request using the .NET or Java APIs. For more information, see the .NET or Java API
online documentation available in the SDK folder.

Syntax

var fileNameList = req.getFileParamNames();

Parameters

This function takes no parameters.

55

CHAPTER 4 MediaScript Objects and Methods

getFileParamPath()

The getFileParamPath()method returns the path to the file associated with the specified file
parameter name.

Syntax

var myImageFile = req.getFileParamPath("paramName");

Parameters

paramName - the name specified for the file parameter when it was set with the request.

Example

Given that a file parameter is passed to a script with a parameter name of testFile, this file can be
accessed within the following script:
var path = req.getFileParamPath("testFile");

var m = new Media();

m.load(name @ path);

getHeader()

The getHeader()method returns the value for the given HTTP header name.

Note: getHeader is both a request method, where the request headers are returned, and a
responsemethod, where the response headers are returned.

Syntax

req.getHeader(

<name>

);

Parameters

name - Specifies the header name.

Example

function main() {

var respText = new TextResponse(TextResponse.TypePlain);

var headers = req.getHeaderNames();

for (var i = 0; i < headers.length; ++i)

{

respText.append(headers[i] + ": " + req.getHeader(headers[i]) + "\n");

}

resp.setObject(respText, RespType.Streamed);

}

56

MediaRich CORE 6.2 • Programmer's Guide

Sample Output

accept: */*

accept-encoding: gzip, deflate

accept-language: en-us

connection: Keep-Alive

host: localhost

user-agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; Q312461)

getHeaderNames()

The getHeaderNames()method returns an array of all HTTP header names for the current request.

Syntax

req.getHeaderNames();

Parameters

This function has no parameters.

Example

function main() {

var respText = new TextResponse(TextResponse.TypePlain);

var headers = req.getHeaderNames();

for (var i = 0; i < headers.length; ++i)

{

respText.append(headers[i] + ": " + req.getHeader(headers[i]) + "\n");

}

resp.setObject(respText, RespType.Streamed);

}

Sample Output

accept: */*

accept-encoding: gzip, deflate

accept-language: en-us

connection: Keep-Alive

host: localhost

user-agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; Q312461)

getJobId()

The getJobId()method returns an integer identifying the current job.

This identifier is unique only to a specificMediaGenerator. It is reset to start at 0 when the
MediaGenerator is started and is incremented by 1 for each request processed. For a description of
theMediaRich batch interface, see “.NET API” on page 16 and “Java API” on page 17.

57

CHAPTER 4 MediaScript Objects and Methods

Syntax

var id = req.getJobId();

Parameters

This function has no parameters.

getJobTempDir()

The getJobTempDir()method returns the path to a local temporary directory for use by the
current job. This directory is created at the start of each request and deleted when the request
completes.

Syntax

var tmpDir = req.getJobTempDir();

Parameters

This function has no parameters.

getNotCached()

The getNotCached()method returns true if this is a no-cache request.

Syntax

var notCached = req.getNotCached();

Parameters

This function takes no parameters.

getParameter()

The getParameter()method returns theMRL parameter specified by name, or null if no such
parameter exists.

Syntax

var paramValue = req.getParameter(

<name>

);

Parameters

name - Specifies the name of theMRL parameter to retrieve.

58

MediaRich CORE 6.2 • Programmer's Guide

getParameterNames()

The getParameterNames()method returns an array of the names of all parameters specified on
theMRL.

Syntax

var nameArray = req.getParameterNames();

Parameters

This function takes no parameters.

getPath()

The getPath()method returns the path previously set using setPath().

Syntax

resp.getPath();

Parameters

This function takes no parameters.

getQueryString()

The getQueryString()method returns the query string portion of theMRL that originated the
request (everything after the ?).

Syntax

var queryString = req.getQueryString();

Parameters

This function has no parameters.

getRequestURL()

The getRequestURL()method returns the full MRL that originated the request.

Syntax

var url = req.getRequestURL();

Parameters

This function has no parameters.

59

CHAPTER 4 MediaScript Objects and Methods

getScriptPath()

The getScriptPath()method returns a string containing just the query component of the URL
used to generate the executing request.

Syntax

req.getScriptPath();

Parameters

This function has no parameters.

Example

If the original URL is:
http://MRserver/mgen/fotophix/photochange.ms?args=%22pic3.jpg%22&is=80,50&p=4:1

then req.ScriptPath() returns
“/fotophix/photochange.ms”

Response Objects
You can use the response object to set the response contents, HTTP response headers, and status
code.

Setting the Response Contents

There are several ways to set the response contents. The simplest is to use theMedia object save()
method without a name parameter, such as the following:
img.save(type @ "jpeg");

When the script terminates, the contents of the img object are sent back as a response. They are
also saved to the cache so that subsequent requests can be returned immediately without having to
re-execute the script.

The response contents can also be set explicitly using the response object setObject()method.
For example, the previous example could be rewritten as the following:
resp.setObject(img, RespType.Cached, {type: "jpeg"});

The response object can be any of the following types: Media, XmlDocument, or TextResponse.
For more information about the setObject()method, see “setObject()” on page 61.

Finally, the response contents can be set directly to the path of an existing file using the response
object setPath()method. For example, to return a PDF file named response.pdf in theMedia
directory, you would write the following:
resp.setPath("response.pdf");

By default the file is copied to the cache. You can also stream the contents back to the client or
return only the file path by setting the response type to RespType.Path.

60

MediaRich CORE 6.2 • Programmer's Guide

MediaScript Response Types

There are three types of responses:

• RespType.Cached - This is the default response type. The response object or file is saved to the
cache so that subsequent requests with the same parameters will be returned immediately from
the cache. The response in this case is the full path of the new cached file.

• RespType.Streamed - The response contents are set to the contents of the response object or
file. Since nothing is saved in the cache, subsequent requests will re-execute the script.

• RespType.Path - This type applies to response files only. The response is set to the full path of
the file. Again, nothing is saved in the cache so subsequent request will re-execute the script.

Methods

The resp object includes the following methods:

• getHeader()
• getMedia()
• getMimeType()
• getObject()d
• getPath()
• getResponseType()
• getSaveParameters()
• getStatusCode()
• setHeader()
• setMedia()
• setMimeType()
• setObject()
• setPath()
• setResponseType()
• setSaveParameters()
• setStatusCode()
• write()
• writeLine()

setObject()

The setObject()method sets the response object, which must be a Media, TextResponse, or
XmlDocument object. Optional parameters can set the response type and save parameters for the
specified object.

Syntax

resp.setObject(

[obj]

[respType]

61

CHAPTER 4 MediaScript Objects and Methods

[saveParams{}]

);

Parameters

obj - specifies the response object. Must be one ofMedia, TextResponse, or XmlDocument.

RespType - optional parameter that sets the response type:

• RespType.Cached (the default) saves the response object or file to theMediaResults cache
directory so that future requests are returned directly by the filter. This is the default if the nc=1
parameter is not specified.

• RespType.Streamed bypasses the cache and returns the response data directly to the filter.
This is the default if nc=1 is specified.

• RespType.Path returns the full native path of a file to the filter but does not copy the file to the
cache.

For more information, see “setResponseType()” on page 64.

saveParams - optional parameter that saves response parameters as an object. The object must be
pre-existing or a temporary object using the {} syntax.

Example

var img = new Media();

img.load(name @ "foo.jpg");

resp.setObject(img, RespType.Streamed, {type: "png"});

getObject()d

The getObject()method returns the object previously set by either setObject(), setMedia(),
or a Media::save() call with no name.

Note: If no response object is set, the function returns null.

Syntax

resp.getObject();

Parameters

This function has no parameters.

setPath()

The setPath()method sets the response file path. An optional parameter can set the response
type.

Syntax

resp.setPath(filePath, RespType);

62

MediaRich CORE 6.2 • Programmer's Guide

Parameters

filePath - sets the response file path. If the path does not specify a file system, the default is the
read file system. See “File Systems” on page 39 for more information.

RespType - optional parameter that sets the response type:

• RespType.Cached (the default) saves the response object or file to theMediaResults cache
directory so that future requests are returned directly by the filter.

• RespType.Streamed bypasses the cache and returns the response data directly to the filter.
• RespType.Path returns the full native path of a file to the filter but does not copy the file to the

cache.

For more information, see “setResponseType()” on page 64.

Example

var img = new Media(); img.load(name @ "foo.jpg");

img.save(name @ "/bar.gif", type @ "gif");

resp.setPath("/bar.gif", RespType.Path);

getPath()

The getPath()method returns the path of the current responseMedia object. Themethod takes
no arguments.

Parameters

This function takes the name of a Media object as its only parameter.

Syntax

resp.getPath(

<Media object>

);

setMedia()

The setMedia()method sets the responseMedia object to the specified object.

Parameters

This function takes the name of a Media object as its only parameter.

Syntax

resp.setMedia(

<Media object>

);

63

CHAPTER 4 MediaScript Objects and Methods

getMedia()

The getMedia()method returns the current responseMedia object.

Syntax

resp.getMedia();

Parameters

This function has no parameters.

setResponseType()

The setResponseType()method sets the response type.

Syntax

resp.setResponseType(

[RespType]

);

Parameters

RespType - sets the response type:

• RespType.Cached - saves the response object or file to theMediaResults cache directory so
that future requests are returned directly by the filter.

• RespType.Streamed - bypasses the cache and returns the response data directly to the filter.
• RespType.Path - (the default) returns the full native path of a file to the filter but does not copy

the file to the cache.

Example

var img = new Media(); img.load(name @ "foo.jpg");

img.save(type @ "gif");

resp.setResponseType(RespType.Streamed);

getResponseType()

The getResponseType()method returns the response type previously set by setPath(), setObject
(), or setResponseType().

Note: If no response type is set, themethod returns null.

Syntax

var respType = resp.getResponseType();

Parameters

This function has no parameters.

64

MediaRich CORE 6.2 • Programmer's Guide

setSaveParameters()

The setSaveParameters()method sets the response save parameters for the responseMedia
object.

Syntax

resp.setSaveParameters(

<save parameters>

);

Parameters

save parameters - specified as either an object, or in the standard syntax (for example, type @

“jpeg”). These parameters are passed directly to theMedia object savemethod. For a description
of these parameters, see “save()” on page 177.

getSaveParameters()

The getSaveParameters()method returns the current save parameters for the responseMedia
object.

Syntax

resp.getSaveParameters();

Parameters

This function has no parameters.

setMimeType()

The setMimeType()method sets the responseMIME type.

Syntax

resp.setMimeType("text/xml");

Parameters

mimeType - specifies the type of response. The default type depends on the response type:

• For files, it is determined automatically based on the file extension.
• For object responses, it is based on the value returned by the _MR_save()method of the

object.

getMimeType()

The getMimeType()method returns the responseMIME type or, if not set, undefined.

Syntax

var mimeType = req.getMimeType();

65

CHAPTER 4 MediaScript Objects and Methods

Parameters

This function has no parameters.

setHeader()

The setHeader()method sets a HTTP response header with the given name/value pair.

Syntax

resp.setHeader("name", "value");

Parameters

name - the string name indicating the HTTP header

value - the string value of the HTTP header

getHeader()

Returns the value for the given HTTP header name.

Syntax

req.getHeader(

<name>

);

Parameters

The only parameter is the specified header name.

Example

function main() {

var respText = new TextResponse(TextResponse.TypePlain);

var headers = req.getHeaderNames();

for (var i = 0; i < headers.length; ++i)

{

respText.append(headers[i] + ": " + req.getHeader(headers[i]) + "\n");

}

resp.setObject(respText, RespType.Streamed);

}

Sample output

accept: */*

accept-encoding: gzip, deflate

accept-language: en-us

connection: Keep-Alive

host: localhost

66

MediaRich CORE 6.2 • Programmer's Guide

user-agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; Q312461)

setStatusCode()

The setStatusCode()method sets the HTTP response status code. The default is STATUS_OK
(200).

Syntax

resp.setStatusCode("statusCode");

Parameters

statusCode - an integer value for the HTTP response status. The default is STATUS_OK (200).

getStatusCode()

The getStatusCode()method returns the response status code.

Syntax

var code = resp.getStatusCode();

Parameters

This function has no parameters.

write()

The write()method appends the specified text to the response object. When you use this
method, you should set themime type to the type of text written (such as text/plain, text/xml, etc.).

Syntax

resp.write("This is the response");

resp.setMimeType("text/plain");

Parameters

The only parameter is the specified text string.

writeLine()

The writeLine()method appends the specified text to the response object and adds a new line.
When you use this method, you should set themime type to the type of text written (such as
text/plain, text/xml, etc.).

Syntax

resp.writeLine("This is the response with a newline");

resp.setMimeType("text/plain");

67

CHAPTER 4 MediaScript Objects and Methods

Parameters

The only parameter is the specified text string.

Media Object

TheMedia object implements themany image processing features provided by MediaRich. A typical
script creates one or moreMedia objects by either loading image data from a file or using theMedia
drawing methods.

Important: Loading, modifying, and saving very large image files can result in errors or crashes
when the system cannot accommodate these files. If this occurs, you should first try adding
morememory to your server. For more information, see “Memory Issues with Very Large
Image Files” on page 362.

Also, when working with large images, please ensure your page file size is set to "System
Managed Size" on the enabled drive and make sure the drive has enough space to contain it.

Media Object Class Methods
There are static methods on theMedia object. They are added to theMedia class, and include the
following:

• getFileInfo()
• getFileFormats()
• getExtensionFromType()
• getTypeFromExtension()

getFileInfo()

This getFileInfo()method returns information about the image or images contained in the
specified file. It returns as much information as can be retrieved without “considerable processing
time.” It is left for the implementor of each file format handler to determine what “considerable
processing time” means, but what is normally returned is that information that can be obtained by
reading a small portion (1-2k) of the file. The data is returned as a JavaScript object, where each value
returned is a property of that object.

The information returned by this method varies from one file type to another. The only value that is
guaranteed to be returned is the Type value, which is the name of the file type (such as TIFF or
JPEG).

68

MediaRich CORE 6.2 • Programmer's Guide

The following values are returned by most file types:

Value Description

Width The width of the image(s) contained in the file

Height The height of the image(s) contained in the file

Format the pixel format of the image(s) contained in the file

The following values are typically returned by some file types:

Value Description Known file formats

XDpi The horizontal resolution of the image(s)

YDpi The vertical resolution of the image(s)

Dpi The DPI information of the image(s) BMP

Frames The number of frames in the file SWF and animations

FrameRate The number of per second to be displayed SWF and animations

ResolutionUnits The number of per second to be displayed SWF and animations

• XDpi - the horizontal resolution of the image(s)
• YDpi - the vertical resolution of the image(s)
• Dpi - the DPI information of the image(s) (for BMP files)
• Frames - the number of frames in the file
• FrameRate - the number of per second to be displayed (for SWF and animations)
• ResolutionUnits - (for SWF and animations)
• XResolution - (for SWF and animations)
• YResolution - (for SWF and animations)
• Layers - the number of layers in the file (for PSD and other files with layers)
• Version and Type - (for SWF and animations)

Media.getFileInfo() returns the following fields (all are text strings) in the info object for most
LibreOffice-handled documents:

• Title - Title of the document
• Author - Original author
• LastEditedBy - Name of the person who last edited the document
• Comment - The comment area in the document properties
• Generator - Name of the application that created the document
• CreationTime - Time the document was originally created. In yyyy/mm/dd hh:mm:ss format
• LastEditTime - Time the document was last edited
• LastPrintTime - The the document was last printed
• Keywords - A list of keywords on a single line from the document properties

69

CHAPTER 4 MediaScript Objects and Methods

• Statistics -Miscellaneous statistics about the doc, like # of pages, # of cells, etc.
• TemplateName - The document template name

Note: Not all documents have all of these fields, and in the case of the Statistics field, not all
documents will return the number of pages or other information.

Many of the plain image formats read via LibreOffice (such as PhotoCD/PCD) do not return any
useful information at all. Metadata is limited to text-based documents and Power Point
presentations.

Syntax

var fileInfo = Media.getFileInfo(name @ "tif/32bit.tif");

Parameters

The only parameter is the specified file name.

Example

var fileInfo = Media.getFileInfo(name @ "tif/32bit.tif");

for (key in fileInfo)

{

print(key + ":" + fileInfo[key] + "\n");

}

Access individual properties using something similar to:
var fileInfo = Media.getFileInfo(name @ "tif/32bit.tif");

var width = fileInfo["Width"];

getFileFormats()

Use this method to get a description of the available file formats. It returns an array of objects
describing the available file formats.

Each element of the array contains the following fields:

• type: The file format type.
• extensions: A comma-delimited list of file extensions for the format.
• flags: A bitwise-OR (|) of one or more of the following flags:

• Media.FormatLoad -> Indicates that the format is loadable.
• Media.FormatSave -> Indicates that the format is saveable.
• Media.FormatCmykSave -> Indicates that the format can save CMYK files.
• Media.FormatExifLoad -> Use if the format supports loading Exif metadata.
• Media.FormatExifSave -> Use if the format supports saving Exif metadata.
• Media.FormatIPTCLoad -> Use if the format supports loading IPTC metadata.
• Media.FormatIPTCSave -> Use if the format supports saving IPTC metadata.
• Media.FormatXMPLoad -> Use if the format supports loading XMP metadata.
• Media.FormatXMPSave -> Use if the format supports saving XMP metadata.

70

MediaRich CORE 6.2 • Programmer's Guide

Syntax

var fileFormats = Media.getFileFormats();

Parameters

This function takes no parameters.

Example

This example returns a text describing all available file formats.
#include "sys:/TextResponse.ms"

function main()

{

var foo = Media.getFileFormats();

var txt = new TextResponse();

for (var i = 0; i < foo.length; ++i)

{

txt.append(foo[i].type + ":\n");

txt.append(" exts: " + foo[i].extensions + "\n");

txt.append(" flags: ");

if (foo[i].flags & Media.FormatLoad)

txt.append("load ");

if (foo[i].flags & Media.FormatSave)

txt.append("save ");

if (foo[i].flags & Media.FormatCmykSave)

txt.append("cmyk");

txt.append("\n");

}

resp.setObject(txt, RespType.Streamed);

}

getExtensionFromType()

The getExtensionFromType()method returns the file system extension (such as jpg) for the
given theMedia type.

Syntax

var extension = Media.getExtensionFromType(<type>);

Parameters

type - theMedia type (such as jpeg or tiff).

71

CHAPTER 4 MediaScript Objects and Methods

getTypeFromExtension()

The getTypeFromExtension()method returns theMedia type for the given extension.

Syntax

var type = Media.getTypeFromExtension(<extension>);

Parameters

extension - the file system extension whose type is desired (such as psd).

Media Object Methods
TheMedia object is constructed using the Media() constructor.

Syntax

var Test = new Media();

Methods

• addArgument()
• adjustHsb()
• adjustRgb()
• arc()
• blur()
• blurBlur()
• blurGaussianBlur()
• blurMoreBlur()
• blurMotionBlur()
• clone()
• collapse()
• colorCorrect()
• colorFromImage()
• colorize()
• colorToImage()
• composite()
• convert()
• convolve()
• crop()
• digimarcDetect()
• digimarcEmbed()
• digimarcRead()
• discard()

72

MediaRich CORE 6.2 • Programmer's Guide

• drawText()
• dropShadow()
• ellipse()
• embeddedProfile()
• equalize()
• exportChannel()
• fixAlpha()
• flip()
• frameAdd()
• getAverageColor()
• getBitsPerSample()
• getBytesPerPixel()
• getFrame()
• getFrameCount()
• getHeight()
• getImageFormat()
• getInfo()
• getLayer()
• getLayerBlend()
• getLayerCount()
• getLayerEnabled()
• getLayerHandleX()
• getLayerHandleY()
• getLayerIndex()
• getLayerName()
• getLayerOpacity()
• getLayerX()
• getLayerY()
• getMetadata()
• getPalette()
• getPaletteSize()
• getPixel()
• getPixelFormat()
• getPixelTransparency()
• getPopularColor()
• getResHorizontal()
• getResVertical()
• getSamplesPerPixel()

73

CHAPTER 4 MediaScript Objects and Methods

• getWidth()
• getXmlInfo()
• glow()
• gradient()
• importChannel()
• infoText()
• line()
• load()
• loadAsRgb()
• makeCanvas()
• measureText()
• noiseAddNoise()
• otherMaximum()
• otherMinimum()
• pixellateFragment()
• pixellateMosaic()
• polygon()
• quadWarp()
• rectangle()
• reduce()
• rotate()
• rotate3d()
• save()
• saveEmbeddedProfile()
• scale()
• selection()
• setColor()
• setFrame()
• setLayer()
• setLayerBlend()
• setLayerEnabled()
• setLayerHandleX()
• setLayerHandleY()
• setLayerOpacity()
• setLayerPixels()
• setLayerX()
• setLayerY()
• setMetadata()

74

MediaRich CORE 6.2 • Programmer's Guide

• setPixel()
• setResolution()
• setSourceProfile()
• sharpenSharpen()
• sharpenSharpenMore()
• sharpenUnsharpMask()
• sizeText()
• stylizeDiffuse()
• stylizeEmboss()
• stylizeFindEdges()
• stylizeTraceContour()
• zoom()

adjustHsb()

The adjustHsb() method alters the HSB levels of an image. It can be applied to images of all
supported bit-depths.

Note: This function is “selection aware”—if a selection is made, the system applies the function
based on the current selection. For more information about making selections, see “selection()”
on page 186.

Syntax

adjustHsb(

[Hue @ <value ±255>]

[Saturation @ <value ±255>]

[Brightness @ <value ±255>]

[UseHLS @ <value true,false>]

);

Parameters

The default value for any parameter not specified is zero.

Hue - an angular color value, so the results from hue @ -255 and hue @ 255 are almost identical.

Saturation and Brightness - linear color values that set the base level for the saturation and
brightness of the image.

UseHLS - if specified as true, causes the adjustment to be performed in the HLS colorspace. In this
case, the Saturation parameter is interpreted as lightness and the Brightness parameter is
interpreted as saturation.

Example

var image = new Media();

75

CHAPTER 4 MediaScript Objects and Methods

image.load(name @ "car.tga");

image.adjustHsb(hue @ 120, saturation @ 50, brightness @ 110);

image.save(type @ "jpeg");

addArgument()

Adds the specified name-value pair to the next Media object method call.

adjustRgb()

The adjustRgb()method alters the contrast, brightness, and color balance of an image.

Note: This function is “selection aware”—if a selection is made, the system applies the function
based on the current selection. For more information about making selections, see “selection()”
on page 186.

Syntax

adjustRgb(

[Contrast @ <value ±255>]

[Brightness @ <value ±255>]

[Red @ <value ±255>]

[Green @ <value ±255>]

[Blue @ <value ±255>]

[NoClip @ <true, false>]

[Invert @ <true, false>]

);

Parameters

The default value for any parameter not specified is zero/false.

Contrast - adjusts the overall contrast of the image.

Brightness - adjusts the overall brightness of the image.

Red, Green, and Blue - adjust the brightness of each of the three color channels individually.

Noclip - when specified, brightness adjustments will avoid maxing-out (either high or low) the
image by reducing the contrast accordingly. A contrast offset can be used to override this process.

76

MediaRich CORE 6.2 • Programmer's Guide

Invert - inverts the values of the three color channels. When mixed with any other settings in this
command, all other calculations are performed first, then the inversion is applied as a last step.

Example

var image = new Media();

image.load(name @ "car.tga");

image.adjustRgb(red @ 120, blue @ 50, green @ 20, invert @ true);

image.save(type @ "jpeg");

arc()

The arc()method draws and positions an arc on the image based on the specified parameters. This
method accepts all composite() parameters except HandleX and HandleY.

The foreground color may vary with this function, depending on the original Media object. If the
object has a set foreground color, or it is set with the setColor() function, MediaRich uses the set
color.

However, if the object has no set foreground color, MediaRich does the following:

• For objects with 256 colors or less, MediaRich uses the last color index
• For objects with 15-bit or greater resolution, MediaRich uses white

Note: Using arc() to mask frames within a JavaScript for loop can result in initially poor anti-
aliasing. To maintain optimal anti-aliasing, place themasking arc outside the loop.

Syntax

arc(

X @ <pixel>,

Y @ <pixel>,

Rx @ <value>,

Ry @ <value>,

Startangle @ <value -360..360>,

Endangle @ <value -360..360>,

[Opacity @ <value 0..255>]

[Unlock @ <true, false>]

[Color @ <color in hexadecimal, rgb, or cymk>]

77

CHAPTER 4 MediaScript Objects and Methods

[Index @ <value 0..16777215>]

[Saturation @ <value 0..255>]

[PreserveAlpha @ <true, false>]

[Blend @ <"blend-type">]

[Width @ <value>]

[Smooth @ <true, false>]

[Fill @ <true, false>]

[Warpangles @ <true, false>]

);

Parameters

The arc is created as a portion of a defined ellipse:

X - specifies (in pixels) the x-axis coordinate for the center point of the ellipse from which the arc is
derived. This parameter is required and has no default value.

Y - specifies (in pixels) the y-axis coordinate for the center point of the ellipse from which the arc is
derived. This parameter is required and has no default value.

Rx - specifies (in pixels) the radius of the ellipse (from which the arc is derived) on the x-axis. This
parameter is required and has no default value.

Ry - specifies (in pixels) the radius of the ellipse (from which the arc is derived) on the y-axis. This
parameter is required and has no default value.

Startangle - indicates the point of the ellipse (from which the arc is derived) where the arc begins.
This parameter is required. There is no default value.

Endangle - indicates the point of the ellipse (from which the arc is derived) where the arc ends. This
parameter is required. There is no default value.

Opacity - specifies opacity of the drawn object. The default value is 255 (completely solid).

Unlock - when set to true, causes the arc to display only where the specified color value appears in
the current (background) image. The default is false.

Color - sets the color of the ellipse. This parameter supports a hexidecimal, RGB, or CMYK color
specification:

• hexidecimal - color value expressed as a value from 0x000000 to 0xFFFFFF (RGB colorspace) or from
0x00000000 to 0xFFFFFFFF (CMYK colorspace)

• RGB - color value expressed as a value from 0 to 16,777,215
• CMYK - color value expressed as a value from 0 to 4,294,967,295

Colorspace

Always pass a color value appropriate to the colorspace. You can ensure this using the
getPixelFormat() function in your script and then using different hexadecimal values for the RGB
and the CMYK colorspaces in an IF/THEN construction. If getPixelFormat() returns "CMYK," use

78

MediaRich CORE 6.2 • Programmer's Guide

the CMYK value (0x plus eight more digits), and otherwise use the RGB value (0x plus six more
digits).

Index - if a color palette exists for the source image, use this parameter to set the color of the arc (as
an alternative to the Color parameter).

Note: You cannot specify values in both the Color and Index fields.

Saturation - specifies a value for the weighting for the change in saturation for destination pixels. A
value of 255 changes the saturation of pixels to the specified color. A value of 128 changes the
saturation of a pixel to a mid-value between the pixel’s current color and the specified color.

Note: The Saturation parameter only functions when the Blend parameter is set to
colorize.

PreserveAlpha - when set to true, preserves the alpha channel of the target image as the alpha
channel of the resulting image. The default value is false.

Blend - specifies the type of blending used to combine the drawn object with the images. Blend
options are: Normal, Darken, Lighten, Hue, Saturation, Color, Luminosity, Multiply,
Screen, Dissolve, Overlay, HardLight, SoftLight, Difference, Exclusion, Dodge,
ColorBurn, Under, Colorize (causes only the hue component of the source to be stamped down
on the image), and Prenormal.

Note: The Burn option is deprecated. ColorBurn results in the same blend.

Width - specifies the thickness (in pixels) of the line that describes the arc. The default value is 1.
However, if the Fill parameter is set to true, the Width parameter is ignored.

Smooth - when set to true, makes the edges of the arc smooth, preventing a pixellated effect. The
default is false.

Important: If you are using smoothing for media that contains an alpha channel and you plan
to save it to a format that does not support alpha channels, it is necessary to use convert() to
remove the alpha channel before using this operation. Or, as an alternative, you can composite
themodified image onto an opaque background before saving the image. Without this
additional handling, themedia will not look correct in a non-alpha file format.

Fill - when set to true, fills in the arc with the color specified by the Color or Index parameter.
The default value is false.

Warpangles - when set to true, warps the angles to match the ellipse. The default value is false.

Example

var image = new Media();

image.load(name @ "logobg.tga");

79

CHAPTER 4 MediaScript Objects and Methods

image.arc(X @ 185, Y @ 121, Rx @ 175, Ry @ 111, StartAngle @ -120, EndAngle @ 60,
Width @ 2, Smooth @ true, WarpAngles @ true);

image.save(type @ "jpeg");

blur()

The blur()method applies a simple blur filter on the image. For each pixel, all the pixels within the
given radius are averaged and the result put in the destination image. This function fully supports
CMYK.

Note: This function is “selection aware”—if a selection is made, the system applies the function
based on the current selection. For more information about making selections, see “selection()”
on page 186.

Syntax

blur(

Radius @ <value 0..30>

);

Parameters

Radius - specifies the radius (in pixels) of the effect.

Note: The “radius” is actually square, so a radius of two results in averaging over a 5x5 square
centered on the given pixel.

Example

var image = new Media();

image.load(name @ "peppers.tga");

image.blur(radius @ 12);

image.save(type @ "jpeg");

80

MediaRich CORE 6.2 • Programmer's Guide

blurBlur()

Applies a similar but milder blur effect as the blur() function.

Note: This function is “selection aware”—if a selection is made, the system applies the function
based on the current selection. For more information about making selections, see “selection()”
on page 186.

Syntax

blurBlur();

Parameters

There are no parameters for this function.

Example

var image = new Media();

image.load(name @ "peppers.tga");

image.blurBlur();

image.save(type @ "jpeg");

blurGaussianBlur()

The blurGaussianBlur()method applies a Gaussian blur effect to the image.

Note: This function is “selection aware”—if a selection is made, the system applies the function

81

CHAPTER 4 MediaScript Objects and Methods

based on the current selection. For more information about making selections, see “selection()”
on page 186.

Syntax

blurGaussianBlur(

[Radius @ <value 0.10..250>]

);

Parameters

Radius - specifies the extent of the effect. The default is 1.00.

Example

var image = new Media();

image.load(name @ "peppers.tga");

image.blurGaussianBlur(Radius @ 5);

image.save(type @ "jpeg");

blurMoreBlur()

The blurMoreBlur()method applies a similar but stronger blur effect as the blurBlur()
function.

Note: This function is “selection aware”—if a selection is made, the system applies the function
based on the current selection. For more information about making selections, see “selection()”
on page 186.

Syntax

blurMoreBlur()

Parameters

There are no parameters for this function.

82

MediaRich CORE 6.2 • Programmer's Guide

Example

var image = new Media();

image.load(name @ "peppers.tga");

image.blurMoreBlur();

image.save(type @ "jpeg");

blurMotionBlur()

The blurMotionBlur() method simulates the type of blur that results from motion (as in the
photo of a tree photographed from a moving car).

Note: This function is “selection aware”—if a selection is made, the system applies the function
based on the current selection. For more information about making selections, see “selection()”
on page 186.

Syntax

blurMotionBlur(

[Angle @ <value -360..360>]

[Distance @ <value 1..250>]

);

Parameters

Angle - specifies the direction of the blurring motion. The default is 0 (level, suggesting motion from
left to right).

Distance - specifies the intensity or “motion speed” of the effect. The default is 10.

Example

var image = new Media();

image.load(name @ "peppers.tga");

image.blurMotionBlur(Angle @ 30, Distance @ 10);

image.save(type @ "jpeg");

83

CHAPTER 4 MediaScript Objects and Methods

clone()

The clone()method copies oneMedia object into another. After a Media object has been cloned,
both the original and the copy can bemodified independently, with changes to one object not
affecting the other.

Syntax

<object name>.clone();

Parameters

This function has no parameters.

Example

var original = new Media();

original.load(name @ "weasel.tga");

original.scale(xs @ 250, constrain @ true);

var copy = original.clone()

...

collapse()

The collapse()method collapses a multi-layer (Photoshop) file into a single layer. This function
always results in a 32-bit image.

Note: This function supports the CMYK colorspace if all layers in the image are CMYK.

Syntax

collapse(

[layers @ <"layer list">]

[PreserveAlpha @ <true, false>]

[IgnoreAlpha @ <true, false>]

[VisibleOnly @ <true, false>]

[likePS @ <true, false>]

);

84

MediaRich CORE 6.2 • Programmer's Guide

Parameters

The collapse()method supports the following parameters:

Parameter Usage

layers Specifies the layers to collapse and the order in which to collapse them.
The layer numbers begin at 0 (background) and go up. The default collapses all
layers from bottom to top.
The layer list must be contained in quotes and consists of comma-separated
entries. You can specify ranges (“0-2”) or individual layers (“0,2”). If you
specify the layers out of order, and they are composited accordingly.
Note:When you specify a comma-separated list of layers, do not leave any
spaces after the commas.

PreserveAlpha When set to true, preserves the alpha channel of the target image layers as the
alpha channel of the resulting collapsed image
The default is false.

IgnoreAlpha When set to true, ignores the alpha channel information when collapsing the
image layers
The default is false.

VisibleOnly When set to true, includes only the layers designated as visible in the collapsed
image
The default is false.

likePS When set to true, iperforms the collapse like Photoshop where he default
background color is white, the alpha channel is removed, and the collapsed
image is made opaque
The default is false.
Note: Because it uses a white background color, this parameter should be
disabled for images that will later be used as a brush.

Loading with PreviewAlpha

The previewAlpha parameter is set to true by default for the load() method (unless Layer or
Track are specified), which loads the Photoshop 2.5-era alpha channels. This setting promotes that
background layer that has no true alpha to a foreground layer and uses this channel as the alpha.
Upon collapse, this takes the alpha from layer 0 and layer 1 and mixes them to produce transparency
all the way through the bottom of the image.

Foremore information about using the previewAlpha parameter, see “Photoshop-specific
parameters” on page 145.

Collapsing named layers

If the Photoshop file has named layers, you can use the layer names (up to 31 characters) in place of
layer numbers. You can also use the “*” as a wildcard when specifying layers. For example:
image.collapse(layers @ "B*"

85

CHAPTER 4 MediaScript Objects and Methods

This line of script collapses all layers whose names begin with “B” (such as Boy, Baseball, Ballcap, and
so on). The layers command is case-sensitive, so the example line of script will not flip layers that
begin with a lowercase “b.”

Example

var image = new Media();

image.load(name @ "pasta.psd");

image.collapse(layers @ "0-2", likePS @ true);

image.save(type @ "jpeg");

colorCorrect()

The colorCorrect()method transforms an image from a source colorspace to a destination
colorspace. MediaRich supports ICC profiles for the following formats: EPS, JPEG, PDF, PS, PSD, and
TIFF.

Specifying ICC profiles

The sourceProfile and destProfile parameters may be specified either as a filename or as an
IccProfile object. By default, profiles are read from the color: file system which is defined by default as
a combination of theMediaRichCore/Shared/Originals/Profiles directory and the system color
profile directory if there is one. TheMediaRichCore/Shared/Originals/Profiles directory is searched
first.

In addition, the special profile names rgb, and cmykmay be used to designate the default RGB and
CMYK profiles specified in the global.properties file under the property keys
ColorManager.DefaultRGBProfile and ColorManager.DefaultCMYKProfile, respectively.
You can change these to designate any default RGB or CMYK profiles you want.

Note: If a Color Profile is associated with an RGB image, this is considered unnecessary data
and by default the attached profiles will not be saved to RGB images.

TheMediaRich server local.properties file can bemodified to change the default profile directory.
Refer to theMediaRich Installation and Administration Guide for more information.

Syntax

colorCorrect(

86

MediaRich CORE 6.2 • Programmer's Guide

destProfile @ <"filename.icc">

[sourceProfile @ <"filename.icc">]

[intent @ <"rendering intent">]

[overrideEmbedded @ <true, false>]

[BlackPointCorrection @ <true, false>]

);

Parameters

destProfile - specifies the destination profile. After an image has been colorCorrected, this profile
becomes the embedded profile for the image. The default location for destination profiles is:
MediaRichCore/Shared/Originals/Profiles.

BlackPointCorrection - This parameter defaults to false (disabled). The black point correction
will also not occur if the "intent" param is set to "Perceptual". It must be set to one of the other
modes in order to see any difference when converting.

Note: You can modify theMediaRich server’s local.properties file to change the default
/Profiles directory. Refer to theMediaRich Installation and Administration Guide for more
information.

sourceProfile - specifies the profile to be used as the source for the color transformation if the
image has no embedded profile or if the overrideEmbedded parameter is set to true. Source
profiles must also be located in the /Profiles directory. An ICC profile embedded in an image is used
by default as the sourceProfile, unless the overrideEmbedded parameter is set to true.

intent - specifies how the transformation from source to destination colorspace is affected. The
possible values for intent are:

• “Perceptual” - the default intent and works best with photographic images.
• “RelativeColorimetric” - corrects the image using the relative white points of the source

and destination ICC profiles.
• “AbsoluteColorimetric” - corrects the image to the absolute white point specified in the

destination ICC profile.
• “Saturation” - works best for line art and images that have large areas of one solid color.

Note: For multi-layer images, profiles are associated only with the image and not with any of
the layers; thus using colorCorrect() affects all layers.

For more information, see “MediaRich Color Management” on page 318.

Example

var image = new Media();

image.load(name @ "car.jpg");

image.colorCorrect(destProfile @ "sRGB.icc");

image.save(type @ "jpeg");

87

CHAPTER 4 MediaScript Objects and Methods

colorize()

The colorize()method changes the hue of the pixels in the image to the specified color.

Note: This function is “selection aware”—if a selection is made, the system applies the function
based on the current selection. For more information about making selections, see “selection()”
on page 186.

Syntax

colorize(

Color @ <color in hexadecimal or rgb>

[layers @ <"layer list">] // (PSD files only)

);

Parameters

Color - specifies the color using its hexadecimal or rgb value. The best results will appear by creating
or loading a selection first.

Note: The extreme colors of solid black (0x000000) and solid white (0xffffff) do not
appear correctly when used for colorize(). It is recommended that, instead, you use
0x101010, and 0xe0e0e0 or less (for black and white, respectively). Also, totally saturated
colors (such as pure red) can create unexpected results.

layers - for PSD files, specifies the layers to be colorized. The layer numbers begin at 0 (background)
and go up. For more information see “load()” on page 137.

Example

var image = new Media();

image.load(name @ "car.tga");

image.selection(name @ "mskcar.tga");

image.colorize(color @ 0x009900);

image.save(type @ "jpeg");

88

MediaRich CORE 6.2 • Programmer's Guide

colorFromImage()

The colorFromImage()method converts the specified color to the colorspace defined by the
destination profile from the colorspace defined by the source profile and returned to the caller. By
default, the source profile is the profile embedded in the image. The specified rendering intent is
used for the conversion. A source profile may be supplied, and is used if the image has no embedded
profile or if the OverrideEmbedded parameter is specified as true.

Syntax

colorFromImage(

color @ <color in hexadecimal, rgb, or cmyk>

[sourceProfile @ <"filename.icc">]

[destProfile @ <"filename.icc">]

[intent @ <"rendering intent">

);

Parameters

color - specifies the to color to convert using its hexadecimal, rgb value.

sourceProfile - specifies the profile used for the source colorspace. Use this parameter to define
the color specified in the color parameter if the image has no embedded profile or if the
OverrideEmbedded flag is set to true. Otherwise, the specified color is defined by the embedded
profile.

destProfile - specifies the profile used for the destination colorspace.

Note: For more information, see the section about specifying ICC profiles in “colorCorrect()” on
page 86.

intent - the rendering intent to use for the conversion. This is an optional parameter.

Example

rgbColor = image.colorFromImage(color @ 0x00aaaa00,
DestProfile @ "rgb");

89

CHAPTER 4 MediaScript Objects and Methods

This example converts the color (red) to the colorspace defined by the profile embedded in image. If
image has no embedded profile, an exception is thrown. Assuming the image is a cmyk image with an
embedded profile, the resulting color will be the rgb color corresponding to color.

Note: If a Color Profile is associated with an RGB image, this is considered unnecessary data
and by default the attached profiles will not be saved to RGB images.

For more information, see CHAPTER 9 , “MediaRich Color Management” on page 318.

colorToImage()

The colorToImage()Method converts the specified color from the colorspace defined by the
source profile to the colorspace defined by the destination profile and returned to the caller. By
default, the destination profile is the profile embedded in the image. The specified rendering intent is
used for the conversion. A destination profile may be supplied, and will be used if the image has no
embedded profile or if the OverrideEmbedded parameter is specified as true.

Syntax

colorToImage(

color @ <color in hexadecimal, rgb, or cmyk>

[destProfile @ <"filename.icc">]

[sourceProfile @ <"filename.icc">]

[intent @ <"rendering intent">

);

Parameters

color - specifies the to color to convert using its hexadecimal or rgb value.

sourceProfile - specifies the profile used for the source colorspace.

destProfile - specifies the profile used for the destination colorspace if the image has no
embedded profile or if the overrideembedded flag is set to true.

Note: For more information, see the section about specifying ICC profiles in “colorCorrect()” on
page 86.

intent - the rendering intent to use for the conversion. This is an optional parameter.

Example

cmykcolor = image.colorToImage(color @ 0xaa0000,
SourceProfile @ "rgb");

This example converts the color (red) to the colorspace defined by the profile embedded in image. If
image has no embedded profile, an exception is thrown. Assuming the image is a CMYK image with
an embedded profile, the resulting color will be the CMYK color corresponding to color.

For more information, see CHAPTER 9 , “MediaRich Color Management” on page 318.

90

MediaRich CORE 6.2 • Programmer's Guide

composite()

The composite()method composites the specified foreground (source) image onto the current
(background) image. The image specified by sourcemust be loaded separately. The background and
source images can be any bit-depth. Transparency is available only for 16-bit, 32-bit, 40-bit (CMYK-A)
images with the alpha channel of the source image being used to determine transparency levels.

Note: This function is “selection aware”—if a selection is made, the system applies the function
based on the current selection. For more information about making selections, see “selection()”
on page 186.

This function also frequently uses Media object components, such as getHeight() , getWidth(),
and others.

Syntax

composite(

[Source @ <user-defined Media object name>]

[Name @ <"filename", "virtualfilesystem:/filename">]

[Onto @ <true, false>]

[Opacity @ <value 0..255>]

[Unlock @ <color in hexadecimal or rgb>]

[Color @ <color in hexadecimal or rgb>]

[Index @ <value 0..16777215>]

[Saturation @ <value 0..255>]

[PreserveAlpha @ <true, false>]

[IgnoreAlpha @ <true, false>]

[X @ <pixel>]

[Y @ <pixel>]

[HandleX @ <"left", "center", "right">]

[HandleY @ <"top", "middle", "bottom">]

[Tile @ <true, false>]

[Blend @ <"blend-type">]

);

Important: Before you can composite an image, you must load() it.

Parameters

Source - specifies the image using its user-defined Media object name. This parameter does not
require quotes.

Name - specifies the image by its name and extension (such as airplane.jpg). Use this parameter if
you are compositing with an image that you have not yet loaded.

91

CHAPTER 4 MediaScript Objects and Methods

If Source or Name is not specified, MediaRich will perform a color-fill when you also specify the
Color parameter. For example, if you composite without naming a source, and specify the color
green (0x009900), the green will appear composited over the entire background or onto the area of
the background as specified through a selection (as with the following example).
var image = new Media()

var image2 = new Media();

image.load(name @ "car.tga");

image2.load(name @ "mskcar.tga");

image.selection(source @ image2);

image.composite(color @ 0x009900);

image.save(type @ "jpeg");

Onto - when specified, the system composites the source onto the loaded image. This way the
current Media acts like the source, and the loaded one acts like the background. The user can
construct a source image and then composite it onto another image without having to cache the
source.

Note: Trying to composite an RGB image onto a CMYK image or vice versa results in the
process stopping at the composite() line with an error.

Opacity - specifies opacity of the source image. The default value is 255 (completely solid).

Note: If the source image already has an alpha channel that renders it less than solid, specifying
opacity can only make it less opaque; it cannot override the alpha channel to make it more
opaque.

Specifying a color value for Unlock causes the selected foreground (source) image to display only
where the specified color value appears in the current (background) image.

Color - colorizes the source image. Any transparency or masking still behaves normally. This allows
a source image to be used as a pattern that can be composited in any color, without having to create
a new image first. For more information about colorizing an image, see “colorize()” on page 88.

If a color palette exists for the source image, you can use the Index parameter to colorize the image
(as an alternative to the Color parameter).

Note: You cannot specify values for both the Color and Index parameters.

Saturation - specifies the value used for weighting for the change in saturation for destination
pixels. A value of 255 changes the saturation of pixels to the specified color. A value of 128 changes
the saturation of a pixel to a mid-value between the pixel’s current color and the specified color.

Note: The Saturation parameter only functions when the Blend parameter is set to
colorize.

92

MediaRich CORE 6.2 • Programmer's Guide

FixAlpha - if set to true, this is equivalent to applying the fixAlpha() command. It may be
required with some images to get the expected results.

PreserveAlpha - when set to true, preserves the alpha channel of the target image as the alpha
channel of the resulting image. The default is false.

IgnoreTransparency - when set to true, the source is composited onto the target and all
transparency information, via alpha channel or other forms of transparency, is ignored. The default
is false. (This option was formerly known as IgnoreAlpha, and that name can still be used, but
the behavior is as described above, with both alpha channels and all other forms of image
transparency ignored.)

X and Y - specify the position of the source image, with the center as anchor point. For example, if “x
@ 100, y @ 50" is specified, the center of the source image will be located at pixel (100,50) on the
target image. If these parameters are not specified, the center of the source image is located at pixel
(0,0).

HandleX and HandleY - specify the attachment point of the source image. The default values are
center and middle.

Tile - when set to true, the source image wraps continuously along both the x- and y-axis so that it
spans the entire target image. The tiling starts in the location specified by the X and Y and HandleX
and HandleY parameters. If not specified, tiling starts from the target image’s center.

Note: If the source image is larger than the target image, setting the Tile parameter to true
has no effect, unless the source image is sufficiently offset from the center to allow this effect to
display.

Blend - specifies the type of blending used to combine the drawn object with the images. Blend
modes are: Normal, Darken, Lighten, Hue, Saturation, Color, Luminosity, Multiply,
Screen, Dissolve, Overlay, HardLight, SoftLight, Difference, Exclusion, Dodge,
ColorBurn, Under, Colorize (causes only the hue component of the source to be stamped down
on the image.), and Prenormal.

This function supports CMYK for the following blend modes: Normal, Darken, Lighten, Screen,
Multiply, Dissolve, Overlay, HardLight, SoftLight, Difference, Exclusion, Burn,
Dodge, Under, Copy, and PreNormal. The other modes (Hue, Saturation, Color, Luminosity,
and Colorize) are not supported for CMYK. You must first convert to RGB using colorCorrect()
and then perform the composite. Additionally, composite cannot be performed unless both images
are either CMYK or RGB.

Example

var Target = new Media();

var Source = new Media();

Target.load(name @ "pasta.tga");

Source.load(name @ "logo.tga");

Target.composite(source @ Source, x @ 100, y @ 150);

Target.save(type @ "jpeg");

93

CHAPTER 4 MediaScript Objects and Methods

convert()

The convert()method converts the image to the specified type/bit-depth. The 8-bit type is not
supported, since this involves a much more complex transformation (palette selection, etc.)—
instead, use reduce().

When converting images with no alpha channel, the generated alpha channel is based on the
background color of the original if the background is set to transparent. Otherwise, the resulting
alpha channel is solid white. You can also use the setColor() function (placed before the convert
() function in theMediaScript) to set the background color, with Transparency set to true.)

Note: convert()will convert between CMYK and CMYKA. To convert CMYK colorspace to
RGB colorspace and vice versa use colorCorrect().

Syntax

convert(

RType @ <"bit-depth">

[Dither @ <value 0..10>]

[PreserveBackground @ <true, false>]

[layers @ <"layer list">] // (PSD files only)

);

Parameters

Rtype - specifies the target bit depth. Supported bit-depths are: Gray-8, RGB-15, RGB-16, RGBA-
16, RGB-24, RGBA-32, CMYK-32, and CMYKA-40. The 16-bit type is 5-6-5, while the 16a-bit is 1-5-5-5
with the top bit as an alpha channel.

In addition, the following shortcuts will have default values when used as input parameters:

• Gray -> Gray-8

• RGB -> RGB-24

• RGBA -> RGBA-32

• CMYK -> CMYK-32

• CMYKA -> CMYKA-40

94

MediaRich CORE 6.2 • Programmer's Guide

Note: Deprecated parameters include: Grayscale, pal-8, 15-bit, 16-bit, 16a-bit, 24-
bit, 32-bit.

MediaRich reads up to 16-bit per channel, and automatically converts 16-bit per channel down to 8-
bit per channel before operations can be handled. The Photoshop reader also converts 24-bit per
channel High Dynamic Range images to 8-bits internally. Additionally, 32 bits per channel, LAB and
Pantone color space are currently not supported as of the writing of this documentation.

Dither - determines the level of dithering to use for remapping image pixels to a lower bit-depth.

PreserveBackground - when dithering is used, eliminates any pixels in the source image that
match the background color from the dithering process in the destination image. This can be used to
eliminate fuzzy edges for an object against a solid color background.

layers - for PSD files, specifies the layers to be converted. Specify the layers to collapse and the
order in which to collapse them. The layer numbers begin at 0 (background) and go up. For more
information see “load()” on page 137.

Example

var image = new Media();

image.load(name @ "peppers.tga");

image.convert(rtype @ "Grayscale", dither @ 5);

image.save(type @ "jpeg");

convolve()

The convolve()method convolves the image with the specified filter.

Syntax

convolve(

filter @ <"filter list">

);

Parameters

filter specifies the standard filter to be applied. Available filters are:

• Blur - standard blur filter
• Smooth - standard smooth filter
• Sharpen - standard sharpen filter
• Emboss1 - standard emboss filter
• Emboss2 - alternate emboss filter
• Edges - edge filter

95

CHAPTER 4 MediaScript Objects and Methods

crop()

The crop()method crops/resizes theMedia to a specified size. This function fully supports CMYK.

The background color may vary with this function, depending on the original Media object. If the
object has a set background color, or it is set with the setColor() function (see page 188),
MediaRich uses the set color. However, if the object has no set background color, MediaRich does
the following:

• For objects with 256 colors or less, MediaRich uses the first color index.
• For objects with 15-bit or greater resolution (including the CMYK colorspace), MediaRich uses

black.

Syntax

crop(

[Xs @ <pixels>, <percentage + "%">]

[Ys @ <pixels>, <percentage + "%">]

[Xo @ <left pixel>]

[Yo @ <top pixel>]

[Layers @ <"layer list">] // (PSD files only)

[PadColor @ <color in hexadecimal or rgb>]

[PadIndex @ <value 0..16777215>]

[Transparency @ <value 0..255>]

[Alg @ <"Normal", "BackColor", "Color", "Alpha">]

[Relative @ <true, false>]

);

Parameters

Xs and Ys - specify the size of the resulting image. The size can be specified either as an absolute, or
as a percentage of the original size (percentages must be designated by adding the “%” as in the
Syntax example). Where Xs or Ys is not specified, the original size is used.

Xo and Yo - specify the position of the top left of themarquee to use. Where either of these is not
specified, themarquee is centered on the image. The Relative parameter effects how these values
are interpreted.

Relative - Defaults to true, which preserves the standard behavior of cropping using coordinates
passed (Xo and Yo)that are relative to the origin. Specify false to crop using absolute coordinates,
which is particularly useful for tiled images.

Layers - for PSD files, specifies the layers to be cropped.The layer numbers begin at 0 (background)
and go up. For more information see “load()” on page 137.

Padcolor or Padindex - specifies the color to be used where the new image dimensions extend
beyond the current image. If a pad color is not specified, the image’s background color is used by
default. For more information about setting an image’s background color, see “setColor()” on
page 188.

96

MediaRich CORE 6.2 • Programmer's Guide

Transparency - specifies the transparency (255 is opaque and 0 is transparent) of the padded
area’s alpha channel. This parameter is useful when the cropped image is used in a composite()
function.

Note: If the cropped image is not 32-bit before cropping, the transparency information is not
used on the next composite() function.

Alg - when set to anything other than “Normal”, the area specified (or the whole image if no area
was defined) is scanned, and the area to crop shrunk accordingly:

• “BackColor” trims away the background areas only.
• “Color” trims away areas that match the pad color.
• “Alpha” trims away areas with transparent alpha channels.

Note: Using Alg @ Alpha on an image with no alpha channel, but which has transparency on,
will give the same results as Alg @ BackColor.

Example

var image = new Media();

image.load(name @ "peppers.tga");

image.crop(xs @ 20, ys @ 16 + "%", padcolor @ 0xe0e0e0);

image.save(type @ "jpeg");

digimarcDetect()

The digimarcDetect()method detects a Digimarc watermark in the file.

Digimarc 4.0 is supported in MediaRich CORE 6.2.

Important: Contact a sales representative at Equilibrium if you do not have Digimarc Server
Licenses and the necessary ID and PIN number to achieve this process. Both the Digimarc iKit
from Equilibrium, as well as, Digimarc Server +Maintenance licenses are required for the
Digimarc Imaging Server to operate using MediaRich Server. Equilibrium is an authorized
Digimarc reseller and can fulfill all Digimarc Server needs. If you already have your Digimarc
License directly with Digimarc, please call Equilibrium to purchase the Digimarc iKit that enables
the automatic Digimarc processing to occur within a MediaRich MediaScript environment.

Syntax

digimarcDetect();

Parameters

There are no parameters for this function.

Example

var Image = new Media();

97

CHAPTER 4 MediaScript Objects and Methods

Image.load(name @ "peppers.jpg");

if (Image.digimarcDetect() == true)

{

// Do something if a watermark is detected

Image.drawText(font @ "Arial", style @ "Bold", text @ "A DigiMarc watermark has been
detected!", size @ 20);

Image.save(type @ "jpeg");

}

digimarcEmbed()

The digimarcEmbed()method embeds Digimarc information in the specified image.

Digimarc 4.0 is supported in MediaRich CORE 6.2.

Important: Contact a sales representative at Equilibrium if you do not have Digimarc Server
Licenses and the necessary ID and PIN number to achieve this process. Both the Digimarc iKit
from Equilibrium, as well as, Digimarc Server +Maintenance licenses are required for the
Digimarc Imaging Server to operate using MediaRich Server. Equilibrium is an authorized
Digimarc reseller and can fulfill all Digimarc Server needs. If you already have your Digimarc
License directly with Digimarc, please call Equilibrium to purchase the Digimarc iKit that enables
the automatic Digimarc processing to occur within a MediaRich MediaScript environment.

Syntax

digimarcEmbed(

[Type @ <"type">]

[CreatorID @ <id number>]

[DistributorID @ <id number>]

[DistributorPin @ <pin number>]

[ImageID @ <id number>]

[TransactionID @ <id number>]

[Year1 @ <yyyy>]

[Year2 @ <yyyy>]

[Adult @ <true, false>]

[Restricted @ <true, false>]

[CopyProtected @ <true, false>]

[Durability @ <value 1..16>]

[TargetResolution @ <DPI amount>]

);

98

MediaRich CORE 6.2 • Programmer's Guide

Parameters

The following table describes the parameters taken by this method:

Parameter Description

Type This indicates the type of Digimarc you wish to embed. The default is
basic. Other options are image, transaction, and copyright.
The type determines which set of additional parameters that are valid
for the watermark.

CreatorID A number that uniquely identifies the creator of the image. The creator
ID maps to a profile of the creator, at the Digimarc MarcCentre Web
site. Valid for the following types: basic, image, transaction, and
copyright.

DistributorID Identifies the organization that distributes the image. This is a numeric
value and can be DistributorID may be set to zero to indicate that no
distributor ID is to be placed in the watermark. Note that if a
DistributorID of zero is specified, then the CreatorID above should not
be zero. Valid for the following types: image, transaction, and
copyright.

DistributorPin This is a unique Personal Identification Number (PIN) issued with the
associated Distributor ID. This value is used by DWM to check the
validity of the Distributor ID. Valid for the following types: image,
transaction, and copyright.

ImageID This a 24-bit number that uniquely identifies the image (similar to an
image catalog number). If no image ID is desired, set the image ID to
zero. Valid for the following type: image.

TransactionID This is a 24-bit number that uniquely identifies an instance of the image.
For example, if an image was licensed to a publication for a one-time
use, the Transaction ID can be used to track that specific licensing
transaction vs. the same image licensed to a different customer for 1
year of use. If no Transaction ID is desired, set the Transaction ID to
zero.Valid for the following type: transaction.

Year1, Year 2 These are the copyright years that are embedded in the image. One or
both of these fields can be empty (zero). Valid for the following type:
copyright.

Adult Indicates that image contains adult content when set to true. The
default value is false (empty). Valid for all types.

Restricted Indicates that the image has restricted use when set to true. The
default value is false (empty). Valid for all types.

99

CHAPTER 4 MediaScript Objects and Methods

Parameter Description

CopyProtected Indicates that the image should not be copied when set to true. The
default value is false (empty). Valid for all types.

Durability Indicates the “amount of energy” of the watermark, between 1 and 16.
The higher the durability value, the more robust the watermark. The
default value is 8. Valid for all types.

TargetResolution TargetResolution takes a value in DPI units to affect the size of the pixels
Digimarc uses to embed the watermark. If this parameter is left off, it
defaults to 100 DPI. The user can specify higher resolutions if they are
watermarking print media, where having larger watermark pixels might
be useful if the media gets rescanned.

Example

var image = new Media();

image.load(name @ "peppers.tga");

image.digimarcEmbed(Type @ "transaction", CreatorID @ 404407,
DistributorID @ 2591, DistributorPin @ 1355,
TransactionID @ 667, Adult @ true, Restricted @ true,
CopyProtected @ true, Durability @ 16);

image.save(type @ "jpeg");

digimarcRead()

The digimarcRead()method returns Digimarc information embedded in the specified image.

Digimarc 4.0 is supported in MediaRich CORE 6.2.

Important: Contact a sales representative at Equilibrium if you do not have Digimarc Server
Licenses and the necessary ID and PIN number to achieve this process. Both the Digimarc iKit
from Equilibrium, as well as, Digimarc Server +Maintenance licenses are required for the
Digimarc Imaging Server to operate using MediaRich Server. Equilibrium is an authorized
Digimarc reseller and can fulfill all Digimarc Server needs. If you already have your Digimarc
License directly with Digimarc, please call Equilibrium to purchase the Digimarc iKit that enables
the automatic Digimarc processing to occur within a MediaRich MediaScript environment.

If no watermark is detected in the image, "undefined" is returned. If a watermark is detected, a
dictionary (MediaScript object) is returned that contains key/value pairs that describe the embedded
watermark. The particular pairs that are returned is a function of the watermark type.

For all watermark types, a 'Type' value is returned that indicates the type of the watermark. Possible
values are: basic, image, transaction, copyright, and unknown.

If "unknown" is returned as the 'Type' value, no other data is returned. For the other four types, the
following values are always returned: CreatorID, Adult, Restricted, and CopyProtected.

100

MediaRich CORE 6.2 • Programmer's Guide

If "image" is returned as the 'Type' value, the following values are also returned: DistributorID
and ImageID.

If "transaction" is returned as the 'Type' value, the following values are also returned:
DistributorID, DistributorPin, and TransactionID.

If "copyright" is returned as the 'Type' value, the following values are also returned:
DistributorID, DistributorPin, Year1, and Year2.

Syntax

digimarcRead();

Parameters

There are no parameters for this function.

Example

// Load an image
var image = new Media();
image.load(name @ "images:tif/32bit.tif");

// Check to see if there's a watermark in the image (there shouldn't be)
print("HasWM: " + (image.digimarcDetect()? "YES" : "NO") + "\n");

// Watermark the image
image.digimarcEmbed(CreatorID @ 404407, Adult @ 1, CopyProtected @ 1, Type @ "image",
DistributorID @ 0, ImageID @ 111);

// Now read the watermark back out, and print info about it
var info = image.digimarcRead();
print("Type = " + info.Type + "\n");
print("CreatorID = " + info.CreatorID + "\n");
print("Adult = " + info.Adult + "\n");
print("Restricted = " + info.Restricted + "\n");
print("CopyProtected = " + info.CopyProtected + "\n");
print("DistributorID = " + info.DistributorID + "\n");
print("ImageID = " + info.ImageID + "\n");

discard()

The discard()method removes the designated Media object from memory. This function fully
supports CMYK image operations.

Syntax

discard()

Example

var image = new Media();

image.load(name @ "peppers.tga");

image.discard();

101

CHAPTER 4 MediaScript Objects and Methods

drawText()

The drawText()method composites the specified text string onto the image. This function fully
supports CMYK image operations.

The foreground color can vary with this function, depending on the original Media object. If the
object has a set foreground color, or it is set with the setColor() function, MediaRich uses the set
color. However, if the object has no set foreground color, MediaRich does the following:

• For objects with 256 colors or less, MediaRich uses the last color index.
• For objects with 15-bit or greater resolution (including the CMYK colorspace), MediaRich uses

white.

Note: Using drawText()within a JavaScript for loop can result in initially poor anti-aliasing.
To maintain optimal anti-aliasing, place the text object outside the loop.

Syntax

drawText(

[Font @ <"font family", "virtualfilesystem:/font family">]

[Style @ <"modifier">]

[Text @ <"string">]

[Color @ <color in hexadecimal, rgb, or cmyk>]

[Index @ <value 0..16777215>]

[Unlock @ <color in hexadecimal, rgb, or cmyk>]

[Saturation @ <value 0..255>]

[Size @ <value>]

[Justify @ <"left", "center", "right", "justified">]

[Wrap @ <pixel-width>]

[Opacity @ <value 0..255>]

[X @ <pixel>]

[Y @ <pixel>]

[HandleX @ <"left", "center", "right">]

[HandleY @ <"top", "middle", "bottom">]

[Angle @ <angle>]

[Smooth @ <true, false>]

[SmoothFactor <0 .. 4>]

[BaseLine @ <true, false>]

[spacing @ <+ or ->]

[Kern @ <true, false>]

[Line @ <value 0.1 to 10>]

[Blend @ <"blend-type">]

[Tile @ <true, false>]

[Append @ <true, false>]

[ClearType @ <true, false>] //(windows only)

102

MediaRich CORE 6.2 • Programmer's Guide

[Dpi @ <0.0...10000.0>]

);

Parameters

Font - specifies the TrueType or PostScript font family name to be used, for example, Arial.
MediaRich supports Type 1 (.pfa and .pfb) PostScript fonts only.

Note: The size of the font in pixels is dependent on the resolution of the resulting image. If the
resolution of the image is not set (zero), the function uses a default value of 72 DPI.

The default location for fonts specified in a MediaScript is the fonts file system, which includes both
theMediaRich Shared/Originals/Fonts folder and the default system fonts folder. If a MediaScript
specifies an unavailable font, MediaRich generates an error.

Note: You can modify theMediaRich server local.properties file to change the default fonts
directory. Refer to theMediaRich Installation and Administration Guide for more
information.

MediaRich also allows you to set up virtual file systems and then use the Font parameter to specify
fonts from that file system. Virtual file systems are defined in theMediaRich server’s local.properties
file.

For example, if you define “CorpFonts:” to represent the path “C:/Fonts/CorpFonts/” in the
local.properties file, you can use files from the CorpFonts directory with the drawText() function
similar to the following:
image.drawText(Font @ "CorpFonts:/Arial", Text @ "Automated Imaging Solutions", Size
@ 18, Color @ 0x0000FF, x @ 185, y @ 30, Smooth @ true, Kern @ true);

Style - specifies the font style. You can use any combination ofmodifiers. Each modifier should be
separated by a space character.

Note: The Style parameter is not available ifMediaRich is running on Mac or Linux.

Weight modifiers modify the weight (thickness) of the font. The valid weight values, in order of
increasing thickness, are the following:

• thin

• extralight or ultralight
• light

• normal or regular
• medium

• semibold or demibold (semi or demi are also acceptable)
• bold

• extrabold or ultrabold (extra or ultra are also acceptable)
• heavy or black

103

CHAPTER 4 MediaScript Objects and Methods

Other Style parameter values are Underline, Italic or Italics, and Strikethru or
Strikeout).

Note: You can combine Style parameter values. For example: Style @ “Bold Italic”

Text - specifies the text to be drawn. The text string must be enclosed in quotes. To indicate a line
break, insert \n into the text.

Color - specifies the color to be used for the text. The default value for text color is the image’s
foreground color. For more information about setting an image’s foreground color, see “setColor()”
on page 188.

This parameter supports a hexidecimal, RGB, or CMYK color specification:

• hexidecimal - color value expressed as a value from 0x000000 to 0xFFFFFF (RGB colorspace) or from
0x00000000 to 0xFFFFFFFF (CMYK colorspace)

• RGB - color value expressed as a value from 0 to 16,777,215
• CMYK - color value expressed as a value from 0 to 4,294,967,295

Colorspace

Always pass a color value appropriate to the colorspace. You can ensure this using the
getPixelFormat() function in your script and then using different hexadecimal values for the RGB
and the CMYK colorspaces in an IF/THEN construction. If getPixelFormat() returns "CMYK," use
the CMYK value (0x plus eight more digits), and otherwise use the RGB value (0x plus six more
digits).

If a color palette is available for coloring the text, you can use the Index parameter to colorize the
text (as an alternative to the Color parameter).

Important: You cannot specify values for both the Color and Index parameters.

Unlock - specifies a color value that determines which pixels are displayed in the overlaid source
image. Using this parameter causes the selected foreground (source) image to display only where the
specified color value appears in the current (background) image.

Saturation - specifies the value used for the weighting for the change in saturation for destination
pixels. A value of 255 changes the saturation of pixels to the specified color. A value of 128 changes
the saturation of a pixel to a mid-value between the pixel’s current color and the specified color.

Note: The Saturation parameter only functions when the Blend parameter is set to
colorize.

Size - sets the point size of the font to be used. The default size is 12.

Justify - specifies how the text will be justified. The default is center. Other options are left,
right, and justified. (The justified option is available for Windows only.) This parameter only
affects text with multiple lines.

104

MediaRich CORE 6.2 • Programmer's Guide

Wrap - specifies a value used to force a new line whenever the text gets longer than the specified
number of pixels (in this case correct word breaking is used).

Opacity - specifies opacity of the text. The default value is 255 (completely solid).

X and Y - specify the text’s position on the image, based on text’s anchor point. The default value is
the center point of the image.

Handlex and Handley - specify the anchor point of the text (for example, Handlex =

left/center/right, Handley= top/middle/bottom) relative to the placement point of the
image (as specified by the X and Y parameters described above). The default values are center and
middle.

Angle - allows the text to be rotated clockwise by the specified angle (in degrees).

Line - specifies line spacing. The default spacing between lines of text is 1.5.

Smooth - specifies that the text is drawn with five-level anti-aliasing.

SmoothFactor - specifies the power of two for image scale-based smoothing. If 1 is specified, the
text will be drawn at twice the specified size and scaled down. If 2 is specified, the text is drawn at
four times the size. This scaling produces smoother text for renderers with poor anti-aliasing at
smaller text sizes. The Smooth parameter must be set to true for this parameter to have any effect.

Baseline - if specified, the text is treated as though it is always the height of the largest character.
This allows text to be aligned between different calls to the function. The distance, in pixels, between
the baselines of two lines of text is 1.5 times the point-size of the text. Thus for 30-point text the line
spacing is 45 pixels. If this parameter is not specified, this function measures the actual height of the
text and centers it accordingly.

Spacing - adjusts the spacing between the text characters. The default is 0. A negative value draws
the text characters closer together.

Kern - if set to true, which is the default, it optimizes the spacing between text characters. If you do
not want to use kerning, specify this parameter as false.

Note: PostScript fonts store the kerning information in a separate file with an .afm extension.
This file must be present in order for kerning to be applied to the text.

Blend - specifies the type of blending used to combine the drawn object with the images. Blend
options are: Normal, Darken, Lighten, Hue, Saturation, Color, Luminosity, Multiply,
Screen, Dissolve, Overlay, HardLight, SoftLight, Difference, Exclusion, Dodge,
ColorBurn, Under, Colorize (causes only the hue component of the source to be stamped down
on the image), and Prenormal.

Tile - if set to true, the text wraps continuously along both the x- and y-axis so that it spans the
entire target image. The tiling starts in the location specified by the X and Y and HandleX and
HandleY parameters. If not specified, tiling starts from the target image’s center.

Note: If the source image is larger than the target image, setting the Tile parameter to true

105

CHAPTER 4 MediaScript Objects and Methods

has no effect, unless the source image is sufficiently offset from the center to allow this effect to
display.

Append - if set to true, drawText() appends the text of the previous call to the specified text
string.

Note: Appendworks best when drawing a single line of left-justified text, as subsequent calls to
drawText()will not maintain the wrap or justification information.

ClearType - if specified as true, theWindows ClearType text renderer will be used if available.

DPI - specifies the DPI used for text rendering. The default value is 72.

Note: The DPI parameter is not available ifMediaRich is running on Mac or Linux.

Example

var image = new Media();

image.load(name @ "logobg.tga");

image.drawText(Font @ "Arial", Style @ "Bold", Text @ "MediaScript: Breakthrough
Technology", Size @ 18, Color @ 0x0000FF, x @ 185, y @ 30, Smooth @ true, Kern @
true);

image.save(type @ "jpeg");

dropShadow()

The dropShadow()method adds a drop shadow to the image based on its alpha channel. The
effects are best seen when compositing the results onto another image. This function fully supports
CMYK image operations.

Syntax

dropShadow(

[ResizeCanvas @ <true, false>]

[layers @ <"layer list">] // (PSD files only)

[Opacity @ <value 0..255>]

[Blur @ <value 0..30>]

[Dx @ <number of pixels>]

106

MediaRich CORE 6.2 • Programmer's Guide

[Dy @ <number of pixels>]

[Color @ <color in hexadecimal or rgb>]

[Index @ <value 0..16777215>]

);

Parameters

ResizeCanvas - provides for the canvas of the image to be automatically enlarged to encompass
the shadow produced. The image’s background color will be used for the additional area. For more
information about setting an image’s background color, see “setColor()” on page 188.

Note: The Enlarge parameter is deprecated.

layers - for PSD files, specifies the layers to be affected. The layer numbers begin at 0 (background)
and go up. For more information see “load()” on page 137.

Opacity - defines the level of transparency for the shadow. The default opacity is 255, which is
completely solid. The shadow affects the alpha channel of the image as well as the visible channels.

Blur - adds blurring that results in a shadowwith a more diffused look. Note, however, that the
larger the blur value, themore processing is required.

Dx and Dy - specify the offset of the shadow from the original, where positive values shift the shadow
down and to the right.

Color - specifies the color to be used for the shadow. The default is the foreground color.

Index - colorizes the image shadow using an available color palette for the source image (as an
alternative to the Color parameter).

Note: You cannot specify values for both the Color and Index parameters.

Example

var image = new Media();

var image2 = new Media();

image.load(name @ "peppers.tga");

image2.makeText(font @ "Arial", style @ "Bold", text @ "Fresh Peppers!", angle @ 30,
color @ 0x00ccff, size @ 36, smooth @ true, baseline @ true, kern @ true);

image2.dropShadow(opacity @ 255, blur @ 2, dx @ 5, dy @ 15, color @ 0x000000);

image.composite(source @ image2);

image.save(type @ "jpeg");

107

CHAPTER 4 MediaScript Objects and Methods

ellipse()

The ellipse()method draws and positions an ellipse on the image based on the specified
parameters. This method accepts all composite() parameters except HandleX and HandleY.

The foreground color can vary with this function, depending on the original Media object. If the
object has a set foreground color, or it is set with the setColor() function, MediaRich uses the set
color. However, if the object has no set foreground color, MediaRich does the following:

• For objects with 256 colors or less, MediaRich uses the last color index.
• For objects with 15-bit or greater resolution, MediaRich uses white.

Note: Using ellipse() to mask frames within a JavaScript for loop can result in initially poor
anti-aliasing. To maintain optimal anti-aliasing, place themasking ellipse outside the loop.

Syntax

ellipse(

X @ <pixel>

Y @ <pixel>

Rx @ <value>

Ry @ <value>

[Opacity @ <value 0..255>]

[Unlock @ <true, false>]

[Color @ <color in hexadecimal, rgb, or cymk>]

[Index @ <value 0..16777215>]

[Saturation @ <value 0..255>]

[PreserveAlpha @ <true, false>]

[Blend @ <"blend-type">]

[Width @ <value>]

[Smooth @ <true, false>]

[Fill @ <true, false>]

);

108

MediaRich CORE 6.2 • Programmer's Guide

Parameters

X - specifies (in pixels) the x-axis coordinate for the center point of the ellipse. This parameter is
required and has no default value.

Y - specifies (in pixels) the y-axis coordinate for the center point of the ellipse. This parameter is
required and has no default value.

Rx - specifies (in pixels) the radius of the ellipse on the x-axis. This parameter is required and has no
default value.

Ry - specifies (in pixels) the radius of the ellipse on the y-axis. This parameter is required and has no
default value.

Opacity - specifies opacity of the drawn object. The default value is 255 (completely solid).

Unlock - if set to true, causes the ellipse to display only where the specified color value appears in
the current (background) image. The default is false.

Color - specifies the color to be used for the ellipse. The default is the foreground color. This
parameter supports a hexidecimal, RGB, or CMYK color specification:

• hexidecimal - color value expressed as a value from 0x000000 to 0xFFFFFF (RGB colorspace) or from
0x00000000 to 0xFFFFFFFF (CMYK colorspace)

• RGB - color value expressed as a value from 0 to 16,777,215
• CMYK - color value expressed as a value from 0 to 4,294,967,295

Colorspace

Always pass a color value appropriate to the colorspace. You can ensure this using the
getPixelFormat() function in your script and then using different hexadecimal values for the RGB
and the CMYK colorspaces in an IF/THEN construction. If getPixelFormat() returns "CMYK," use
the CMYK value (0x plus eight more digits), and otherwise use the RGB value (0x plus six more
digits).

Index - colorizes the ellipse using the available color palette for the source image (as an alternative
to the Color parameter).

Note: You cannot specify values for both the Color and Index parameters.

Saturation - specifies a value used for weighting for the change in saturation for destination pixels.
A value of 255 changes the saturation of pixels to the specified color. A value of 128 changes the
saturation of a pixel to a mid-value between the pixel’s current color and the specified color.

Note: The Saturation parameter only functions when the Blend parameter is set to
colorize.

PreserveAlpha - if set to true, preserves the alpha channel of the target image as the alpha
channel of the resulting image. The default is false.

109

CHAPTER 4 MediaScript Objects and Methods

Blend - specifies the type of blending used to combine the drawn object with the images. Blend
options are: Normal, Darken, Lighten, Hue, Saturation, Color, Luminosity, Multiply,
Screen, Dissolve, Overlay, HardLight, SoftLight, Difference, Exclusion, Dodge,
ColorBurn, Under, Colorize (causes only the hue component of the source to be stamped down
on the image), and Prenormal.

Note: Burn has been deprecated. ColorBurn results in the same blend.

Width - specifies the thickness (in pixels) of the line that describes the ellipse. The default is 1.

Note: If the Fill parameter is set to true, Width is ignored.

Smooth - if set to true, makes the edges of the ellipse smooth, preventing a pixellated effect. The
default is false.

Important: If you are using smoothing for media that contains an alpha channel and you plan
to save it to a format that does not support alpha channels, it is necessary to use convert() to
remove the alpha channel before using this operation. Or, as an alternative, you can composite
themodified image onto an opaque background before saving the image. Without this
additional handling, themedia will not look correct in a non-alpha file format.

Fill - fills in the ellipse with the color specified by the Color or Index parameter. The default is
false.

Example

var image = new Media();

image.load(name @ "logobg.tga");

image.ellipse(X @ 272, Y @ 180, Rx @ 50, Ry @ 30, Opacity @ 128,
Color @ 0x66CCFF, Saturation @ 128, Blend @ "Hue", Smooth @ true,
Fill @ false);

image.save(type @ "jpeg");

110

MediaRich CORE 6.2 • Programmer's Guide

embeddedProfile()

The embeddedProfile()method returns true if theMedia has an embedded ICC profile, false if
not.

Syntax

<object name>.embeddedProfile();

Parameters

This function has no parameters.

Example

if (image.embeddedProfile() == false)

image.colorCorrect(destProfile @ "sRGB.icc");

{...

equalize()

The equalize()method equalizes the relevant components of theMedia. Equalization takes the
used range of a component and expands it to fill the available range. This can be applied to both
indexed and non-indexed images.

Note: This function is “selection aware”—if a selection is made, the system applies the function
based on the current selection. For more information about making selections, see “selection()”
on page 186.

Syntax

equalize(

[Brightness @ <-1.00 to 20.00>]

[Saturation @ <-1.00 to 20.00>]

);

Parameters

Brightness and Saturation - specify values that are given in terms of clip-value. Clip-value is the
percentage of pixels that can lie outside themeasured range before expansion and whose value is
therefore clipped in the process. The valid values are 0 to 20 and –1, although values between 0.5
and 1.0 generally produce themost favorable results.

Note: As a special case, specifying a clip-value of –1 applies histogram equalization to that
channel. Histogram equalization is a much harsher method, but effectively maximizes the
amount of visible information in an image.

Example

var image = new Media();

111

CHAPTER 4 MediaScript Objects and Methods

image.load(name @ "car.tga");

image.equalize(brightness @ 10, saturation @ 5);

image.save(type @ "jpeg");

exportChannel()

The exportChannel()method exports a single channel of the source as a grayscale image. This
function fully supports the CMYK colorspace.

Note: This function was formerly named exportGun(), which is deprecated.

Syntax

exportChannel(

Channel @ <"channelname">

[layers @ <"layer list">] // (PSD files only)

);

Parameters

Valid channel names are:

• Blue, Green, Red, Alpha

• Cyan, Magenta, Yellow, Black (CMYK-space)
• Brightness, Saturation, Hue (HSV-space)
• Brightness2, Saturation2, Hue2 (HLS-space)

The default value is Blue.

layers - for PSD files, specifies the layers to be exported. The layer numbers begin at 0 (background)
and go up. For more information see “load()” on page 137.

Important: Unless a single layer is specified when exporting a single channel from a multi-
layered image, the content of all layers are replaced with the specified channel. Because this
strips away the transparency from the layers, only the topmost layer is visible when the image is
collapsed or saved.

112

MediaRich CORE 6.2 • Programmer's Guide

If you need the channel from a layer other than the top one, specify this single layer when
loading the file, exporting the channel, or collapsing the image. Alternatively, you can use
Media.getLayer() to retrieve the resulting layer from the image after using exportChannel
().

Example

var image = new Media();

image.load(name @ "peppers.tga");

image.exportChannel(channel @ "green");

image.save(type @ "jpeg");

Note: Comparing the original CMYK image and the newly generated images in Photoshop will
show the exact inverse results of what Photoshop displays for the separate channels.

fixAlpha()

The fixAlpha()method adjusts the RGB components of an image relative to its alpha channel.
This should be done when an alpha channel has been manually created for an image. This command
will frequently correct unexpected results in functions that utilize the alpha channel.

Important: This function is now removed from MediaScript. If it is encountered, no operation is
executed.

Syntax

fixAlpha();

Example

var image = new Media();

image.load(name @ "pasta.tga");

image.fixAlpha();

image.save(type @ "jpeg");

flip()

The flip()method flips theMedia vertically or horizontally. This function fully supports images
within the CMYK colorspace.

Syntax

flip(

Axis @ <"Horizontal, Vertical">

[layers @ <"layer list">] // (PSD files only)

);

113

CHAPTER 4 MediaScript Objects and Methods

Parameters

Axis - designates along which axis (horizontal or vertical) to flip theMedia.

layers - for PSD files, specifies the layers to be affected. The layer numbers begin at 0 (background)
and go up. For more information see “load()” on page 137.

Example

var image = new Media();

image.load(name @ "pasta.tga");

image.flip(axis @ "horizontal");

image.save(type @ "jpeg");

frameAdd()

The frameAdd()method adds the given frame(s) to the specified Media object. If theMedia object
already contains one or more images, any frames added are cropped and converted to match the
first frame in theMedia. This function fully supports the CMYK colorspace.

Before you can add a frame, you must load() the image you want to add.

Note: When using frameAdd()within a JavaScript for loop: including Draw functions (line
(), ellipse(), etc.) within the loop to mask other frames can result in initially poor anti-
aliasing.

Syntax

frameAdd(

[Source @ <user-defined Media object name>]

[Name @ <"filename", "virtualfilesystem:/filename">]

[Duration <1 .. 300000>]

);

Parameters

Source - specifies the image to add by its user-defined Media object name. If you are adding an
image that you have not yet loaded, use the Name parameter to refer to that image by its name and

114

MediaRich CORE 6.2 • Programmer's Guide

extension (such as airplane.jpg).

Name - if you or the administrator has set up virtual file systems, you can use this parameter to add
frames from that file system. Virtual file systems are defined in theMediaRich server’s
local.properties file. Refer to theMediaRich Installation and Administration Guide for
more information.

For example, if you define MyImages: to represent the path C:/Images/MyImages/ in the
local.properties file, you can use files from theMyImages directory with the frameAdd() function:
image.frameAdd(name @ "MyImages:/split.tga");

Note: The Name parameter is deprecated.

Duration - specifies the frame duration in seconds. This sets the duration of the frame in our
internal structure. Specifying this does not currently do anything useful.

Example

var image = new Media();

var image2 = new Media();

image.load(name @ "peppers.tga");

image2.load(name @ "Bears.tga");

image.frameAdd(Source @ image2);

image.reduce();

image.save(type @ "gif");

getAverageColor()

The getAverageColor()method returns the average color of the entire image as an integer that
represents an RGB or CMYK color value.

Syntax

<object name>.getAverageColor();

Parameters

This function has no parameters.

Example

var pix = new RgbColor(image.getAverageColor());

print("Average RGB color is "+pix.red+", "+pix.green+", "+pix.blue+"\n");

getBitsPerSample()

The getBitsPerSample()method returns the number of bits per sample.

Syntax

<object name>.getBitsPerSample();

115

CHAPTER 4 MediaScript Objects and Methods

Parameters

This function has no parameters.

Example

if (image.getBitsPerSample() == 8)

{...

getBytesPerPixel()

The getBytesPerPixel()method returns the number of bytes per pixel.

Syntax

<object name>.getBytesPerPixel();

Parameters

This function has no parameters.

Example

if (image.getBytesPerPixel() == 3)

{...

Note: If you want MediaRich to return the bit-depth of the image, use the getImageFormat
() function.

getFrame()

The getFrame()method returns a Media object for the specified frame (if available), otherwise
returns undefined.

Syntax

<object name>.getFrame(

<frame offset>

);

Parameters

This function takes the specified frame offset (starting from 1) as an argument.

Example

var image = new Media();

image.load(name @ "Images/clock.gif"); // Load an animated GIF with four frames

image2 = image.getFrame(2);

image2.save(name @ "frame2.gif");

116

MediaRich CORE 6.2 • Programmer's Guide

getFrameCount()

The getFrameCount()method returns the number of frames in an animation.

Syntax

<object name>.getFrameCount();

Parameters

This function has no parameters.

Example

for (x = 0;x < image.getFrameCount();x++)

{...

getHeight()

The getHeight()method returns the vertical size in pixels.

Syntax

<object name>.getHeight();

Parameters

This function has no parameters.

Example

if (image.getHeight() == 480)

{...

getImageFormat()

The getImageFormat()method returns a string representing the image type.

Important: getImageFormat() is now deprecated. getPixelFormat() is the preferred
function and is supported in current versions ofMediaScript (see “getPixelFormat()” on
page 125).

Syntax

<object name>.getImageFormat();

Parameters

This function has no parameters.

Example

var image = new Media();

image.load(name @ "peppers.psd");

117

CHAPTER 4 MediaScript Objects and Methods

if(image.getImageFormat() == "24 Bit")

{...

getInfo()

The getInfo()method returns the system version information. It is recommended for advanced
users only.

Syntax

<object name>.getInfo(

<"argument">

);

Parameters

This method takes one of these arguments as a string: all, devices, commands, or filing.

Example

var image = new Media();

error(image.getInfo("all"));

getLayer()

The getLayer()method returns a Media object for the specified layer (if available); otherwise
returns undefined. It takes the specified layer index (starting from zero) as an argument.

Syntax

<object name>.getLayer(

<layer number>

);

Parameters

layer number - specifies the desired layer of theMedia object.

Example

var image = new Media();

var newimage = new Media();

newimage = image.getLayer(2);

getLayerBlend()

The getLayerBlend()method returns the blending mode of theMedia layer with the specified
layer index (if available).

Syntax

<object name>.getLayerBlend(

118

MediaRich CORE 6.2 • Programmer's Guide

<layer index>

);

Parameters

layer index - specifies the desired layer index (starting from 0).

The blend modes are: Normal, Darken, Lighten, Hue, Saturation, Color, Luminosity,
Multiply, Screen, Dissolve, Overlay, HardLight, SoftLight, Difference, Exclusion,
Dodge, ColorBurn, Under, and Colorize.

Note: The Burnmode is deprecated. ColorBurn results in the same blend.

Example

var image = new Media();

image.load(name @ "peppers.psd");

if(image.getLayerBlend(0) == "Saturation")

{...

getLayerCount()

The getLayerCount()method returns the total number of layers for theMedia.

Syntax

<object name>.getLayerCount();

Parameters

This function has no parameters.

Example

for(x = 0;x < image.getLayerCount();x++)

{...

Layer = image.getLayer(x);

...}

getLayerEnabled()

The getLayerEnabled()method returns true if the named layer is enabled (visible), false if not.

If you use the collapse() function without naming specific layers, MediaRich collapses all enabled
layers and ignores disabled layers. Use the getLayerEnabled() function to determine if a layer is
enabled or not. Use the setLayerEnabled() function or the eye icon in Photoshop to
enable/disable a layer.

Syntax

<object name>.getLayerEnabled(

<layer index>

119

CHAPTER 4 MediaScript Objects and Methods

);

Parameters

layer index - specifies the desired layer index (starting from 0).

Example

if (image.getLayerEnabled(2) == false)

image.setLayerEnabled(2, true);

...}

getLayerHandleX()

The getLayerHandleX()method returns the HandleX value (left, center, or right) of the
Media layer with the specified index (if available). HandleX refers to the selected layer attachment
point on the x-axis.

Syntax

<object name>.getLayerHandleX(

<layer index>

);

Parameters

layer index - specifies the desired layer index (starting from 0).

Example

var image = new Media();

image.load(name @ "peppers.psd");

if(image.getLayerHandleX(0) == "Center")

{...

getLayerHandleY()

The getLayerHandleY()method returns the HandleY value (top, middle, or bottom) of the
Media layer with the specified index (if available). HandleY refers to the selected layer attachment
point on the y-axis.

Syntax

<object name>.getLayerHandleY(

<layer index>

);

Parameters

layer index - specifies the desired layer index (starting from 0).

120

MediaRich CORE 6.2 • Programmer's Guide

Example

var image = new Media();

image.load(name @ "peppers.psd");

if(image.getLayerHandleY(0) == "Middle")

{...

getLayerIndex()

The getLayerIndex()method returns the index of theMedia layer with the specified layer name
(if available).

Syntax

<object name>.getLayerIndex(

<"layer name">

);

Parameters

The only parameter specifies the desired layer name.

Example

var image = new Media();

image.load(name @ "peppers.psd");

if(image.getLayerIndex("GreenPepper") == 2)

{...

getLayerName()

The getLayerName()method returns a string with the name of theMedia layer (if available). It
takes the specified layer index (starting from zero) as an argument.

Syntax

<object name>.getLayerName(

<layer or "layername">

);

Parameters

layer index - specifies the desired layer index (starting from 0).

Example

var image = new Media();

image.load(name @ "peppers.psd");

if(image.getLayerName(2) == "GreenPepper")

{...

121

CHAPTER 4 MediaScript Objects and Methods

getLayerOpacity()

The getLayerOpacity()method returns the opacity of theMedia layer with the specified index (if
available). For more information about opacity settings, see “composite()” on page 91.

Syntax

<object name>.getLayerOpacity(

<layer index>

);

Parameters

layer index - specifies the desired layer index (starting from 0).

Example

var image = new Media();

image.load(name @ "peppers.psd");

if(image.getLayerOpacity(2) == 50)

{...

getLayerX()

The getLayerX()method returns the X offset of theMedia layer with the specified index (if
available).

Note: X and Y layer offsets determine relative positions of layers to each, and are used by the
collapse() function. See “collapse()” on page 84 for more information.

Syntax

<object name>.getLayerX(

<layer index>

);

Parameters

layer index - specifies the desired layer index (starting from 0).

Example

var image = new Media();

image.load(name @ "peppers.psd");

if(image.getLayerX(2) == 25)

{...

122

MediaRich CORE 6.2 • Programmer's Guide

getLayerY()

The getLayerY()method returns the Y offset of theMedia layer with the specified index (if
available).

Note: X and Y layer offsets determine relative positions of layers to each, and are used by the
collapse() function. See “collapse()” on page 84 for more information.

Syntax

<object name>.getLayerY(

<layer index>

);

Parameters

layer index - specifies the desired layer index (starting from 0).

Example

var image = new Media();

image.load(name @ "peppers.psd");

if(image.getLayerY(2) == 25)

{...

getMetadata()

The getMetadata()method returns a metadata string of the specified format associated with a
Media object.

MediaRich allows users to assign arbitrary key/value pairs to any Media object using the
setMetaData() function.

Syntax

var xmlDoc = <object name>.getMetadata(<"format">);

Parameters

The specified format is the key of the key/value pair. Valid values are Exif, IPTC, or XMP.

Example

var image = new Media();

image.load(name @ "peppers.psd");

image.getMetaData("Exif");

{...

123

CHAPTER 4 MediaScript Objects and Methods

getPalette()

The getPalette()method returns an array of integers containing the colors in the palette or null if
the image does not have a palette.

The RGB components of these colors can be obtained using the RGBColor object defined in
sys/color.ms. If the image has no palette the array is empty.

Syntax

palColors = <object name>.getPalette();

Parameters

This function has no parameters.

Example

#include "sys:color.ms"

.

.

.

var colors = media.getPalette();

if (colors.length >= 1)

{

var rgb = new RGBColor(colors[0]);

print("red is " + rgb.red);

}

getPaletteSize()

The getPaletteSize()method returns the number of colors in the palette or 0 if the image does
not have a palette.

Syntax

var nColors = <object name>.getPaletteSize();

Parameters

This function has no parameters.

getPixel()

The getPixel()method returns the color value, omitting any alpha channel. For RGB images, this
will be a 24-bit color value. For CMYK, a 32-bit color value.

Syntax

<object name>.getPixel(

X @ <pixel>

Y @ <pixel>

124

MediaRich CORE 6.2 • Programmer's Guide

[layers @ <"layer list">] // (PSD files only)

);

Parameters

X and Y - specify the coordinates of the target pixel. The top left corner of an image is represented by
the coordinates 0,0.

layers - for PSD files, specifies the layers to be included. The layer numbers begin at 0 (background)
and go up. For more information see “load()” on page 137.

Example

var image = new Media();

image.load(name @ "peppers.psd");

if(image.getPixel(X @ 25, Y @ 100)== rgb(255,0,0))

{...

getPixelFormat()

The getPixelFormat()method returns a string representing the image type: Gray-8, RGB-15,
RGB-16, RGBA-16, RGB-24, RGBA-32, CMYK-32, CMYKA-40.

Syntax

<object name>.getPixelFormat();

Parameters

This function has no parameters.

Example

var image = new Media();

image.load(name @ "peppers.psd");

if(image.getPixelFormat() == "RGB-24")

{...

getPixelTransparency()

The getPixelTransparency()method returns the value for the alpha channel or 255 if there is
no alpha channel. This function fully supports theMedia object within the CMYK colorspace.

Syntax

<object name.>.getPixelTransparency(

X @ <pixel>

Y @ <pixel>

[layers @ <"layer list">] // (PSD files only)

);

125

CHAPTER 4 MediaScript Objects and Methods

Parameters

X and Y - specify the coordinates of the target pixel. The top left corner of an image is represented by
the coordinates 0,0.

layers - for PSD files, specifies the layers to be included. The layer numbers begin at 0 (background)
and go up. For more information see “load()” on page 137.

getPopularColor()

The getPopularColor()method returns the 24-bit color value (0 - 16,777,215) of the color that
appears most frequently in the named object for the RGB colorspace.

Syntax

<object name>.getPopularColor(

[Precise @ <true, false>]

[layers @ <"layer list">] // (PSD files only)

);

Parameters

Precise - if set to false, which is the default, the color returned will be a close approximation of
the actual color that appears most often in the image.

layers - for PSD files, specifies the layers to be included. The layer numbers begin at 0 (background)
and go up. For more information see “load()” on page 137.

Example

var image = new Media();

image.load(name @ "peppers.psd");

if(image.getPopularColor()== rgb(255,0,0))

{...

getResHorizontal()

The getResHorizontal()method returns the horizontal resolution in DPI.

Syntax

<object name>.getResHorizontal();

Parameters

This function has no parameters.

Example

if (image.getResHorizontal() == 72)

{...

126

MediaRich CORE 6.2 • Programmer's Guide

getResVertical()

The getResVertical()method returns the vertical resolution in DPI.

Syntax

<object name>.getResVertical();

Parameters

This function has no parameters.

Example

if (image.getResVertical() == 72)

{...

getSamplesPerPixel()

The getSamplesPerPixel()method returns the number of samples per pixel.

Syntax

<object name>.getSamplesPerPixel();

Parameters

This function has no parameters.

Example

if (image.getSamplesPerPixel() == 3)

{...

getWidth()

The getWidth()method returns the horizontal size in pixels.

Syntax

<object name>.getWidth();

Parameters

This function has no parameters.

Example

if (image.getWidth() == 480)

{...

127

CHAPTER 4 MediaScript Objects and Methods

getXmlInfo()

The getXmlInfo()method returns an XML document that contains the installed file formats. This
document looks similar to the following:
<fileformats>

<fileformat>

<name>format name</name>

<version>format version</version>

<extensions>comma separated list of extensions</extensions>\n";

<modes>read,write</modes>

</fileformat>

...

</fileformats>

Syntax

xmlString = media.getXmlInfo();

Parameters

This function has no parameters.

glow()

The glow()method produces a glow or halo around the image. It is similar to the dropShadow()
method and is based on the alpha channel of the image. Its effects are best seen when compositing
the results onto another image.

The foreground and background colors may vary with this function, depending on the original Media
object. If the object has foreground and background colors, or such colors are set with the
setColor() function, MediaRich uses the set colors including the CMYK colorspace (see “setColor
()” on page 188).

However, if the object has no set background color, MediaRich does the following:

• For objects with 256 colors or less, MediaRich uses the first color index.
• For objects with 15-bit or greater resolution (including the CMYK colorspace), MediaRich uses

black.

If the object has no set foreground color, MediaRich does the following:

• For objects with 256 colors or less, MediaRich uses the last color index.
• For objects with 15-bit or greater resolution (including the CMYK colorspace), MediaRich uses

white.

Syntax

glow(

Blur @ <value 0..30>

[Size @ <value 1..30>]

128

MediaRich CORE 6.2 • Programmer's Guide

[Halo @ <value 0..30>]

[Opacity @ <value 0..255>]

[Color @ <color in hexadecimal or rgb>]

[Index @ <value 0..16777215>]

[ResizeCanvas @ <true, false>]

[layers @ <"layer list">] // (PSD files only)

);

Parameters

Blur - adds a specified blur to the shadow that gives it a more diffused look. Note, however, that the
larger the blur value, themore processing is required.

Size - specifies how large (in pixels) the glow surrounding the image should be.

Halo - specifies the gap between the image and the start of the glow. The value for halo must always
be smaller than the size of the glow. The default value is 0.

Opacity - defines the level of transparency for the shadow. The default opacity is 255, which is
completely solid.

Note: The shadow affects the alpha channel of the image as well as the visible channels.

Color - defines the color of the glow, and the default is the foreground color.

Index - colorizes the glow using an index value from the available color palette for the source image
(as an alternative to the Color parameter).

Note: You cannot specify values for both the Color and Index parameters.

ResizeCanvas - automatically resizes the canvas of the image to encompass the shadow produced.
The image’s background color will be used for the additional area. For more information about
setting an image’s background color, see “setColor()” on page 188.

layers - for PSD files, specifies the layers to be affected. The layer numbers begin at 0 (background)
and go up. For more information see “load()” on page 137.

Example

var image = new Media();

var image2 = new Media();

image.load(name @ "peppers.tga");

image2.drawText(font @ "Arial", style @ "Bold", text @ "Fresh Peppers!", angle @ 0,
color @ 0x00ccff, size @ 36, smooth @ true, baseline @ false, kern @ true);

image2.glow(Blur @ 4, Size @ 8, Halo @ 0, Opacity @ 220, Color @ 0xFFFF00,
ResizeCanvas @ false);

image.composite(source @ image2);

image.save(type @ "jpeg");

129

CHAPTER 4 MediaScript Objects and Methods

gradient()

The gradient()method composites a color gradient onto the source image. This method accepts
all composite()parameters except HandleX and HandleY. For information about these
parameters, see “composite()” on page 91.

Syntax

gradient(

[adjust @ <true, false>],

[style @ <"Linear","Radial","Angle","Reflected","Diamond">]

[angle @ <0..360>]

[scale @ <10..150>]

[reverse]

[color1 @ <RGBcolor>]

[color2 @ <RGBcolor>]

[gradient @ <"RedGreen","VioletOrange","BlueRedYellow","BlueYellowBlue",
"OrangeYellowOrange", "VioletGreenOrange", "YellowVioletOrangeBlue", "Copper",
"Chrome", "Spectrum">]

[opacity @ <0..255>]

[blend @ <"Normal", "Darken", "Lighten", "Hue", "Saturation", "Color", "Luminosity",
"Multiply", "Screen", "Dissolve", "Overlay", "HardLight", "SoftLight", "Difference",
"Exclusion", "Dodge", "ColorBurn", "Under", "Colorize", "Prenormal">]

[layers @ <"layer list">] // (PSD files only)

Parameters

adjust - when specified, all the other parameters except color1, color2, gradient, and
reverse (which have their usual meaning) are ignored. The image is then interpreted as a grayscale
image which is then passed through the specified gradient, giving a new false-color image. This
operates the sameway as the GradientMap adjustment layer in Photoshop. The adjust parameter
should be set to false if one is creating an image consisting of nothing but a gradient.

style - specifies a common style for the gradient. The available styles are: Linear, Radial, Angle,
Reflected, and Diamond.

angle - specifies the value of the angle at which the gradient is applied. This value can range from 0
to 360, to indicate the degree of the angle.

130

MediaRich CORE 6.2 • Programmer's Guide

scale - specifies a scale to be applied to the gradient. This value can range from 10 to 150.

reverse - when specified, reverses the direction of the applied gradient.

color1 and color2 - used as an alternative to specifying a common gradient, these parameters
specify a custom gradient created by blending the two specified RGB colors. If only one of these
parameters is specified, a gradient is created that blends between the specified color and
transparent.

gradient - specifies a common color gradient that blend two or three standard colors. The available
gradients are RedGreen, VioletOrange, BlueRedYellow, BlueYellowBlue,
OrangeYellowOrange, VioletGreenOrange, YellowVioletOrangeBlue, Copper, Chrome,
Spectrum.

Note: If color1 and/or color2 are specified together with gradient, a parameter clash error
occurs.

opacity - specifies opacity of the source image. The default value is 255 (completely solid).

Note: If the source image already has an alpha channel that renders it less than solid, specifying
opacity can only make it less opaque; it cannot override the alpha channel to make it more
opaque.

blend - specifies the type of blending used to combine the drawn object with the images. Blend
modes are: Normal, Darken, Lighten, Hue, Saturation, Color, Luminosity, Multiply,
Screen, Dissolve, Overlay, HardLight, SoftLight, Difference, Exclusion, Dodge,
ColorBurn, Under, Colorize (causes only the hue component of the source to be stamped down
on the image), and Prenormal.

This function supports CMYK for the following blend modes: Normal, Darken, Lighten, Screen,
Multiply, Dissolve, Overlay, HardLight, SoftLight, Difference, Exclusion, Burn,
Dodge, Under, Copy, and PreNormal. The other modes (Hue, Saturation, Color, Luminosity,
and Colorize) are not supported for CMYK. You must first convert to RGB using colorCorrect()
and then perform the composite. Additionally, composite cannot be performed unless both images
are either CMYK or RGB.

layers - for PSD files, specifies the layers to be affected. The layer numbers begin at 0 (background)
and go up. For more information see “load()” on page 137.

Example

var image = new Media();

image.load(name @ "peppers.tga");

image.gradient(gradient @ "redgreen");

image.save(type @ "jpeg");

131

CHAPTER 4 MediaScript Objects and Methods

importChannel()

The importChannel()method imports the specified source image (treated as a grayscale) and
replaces the selected channel in the original. It is important that both images must be the same size.
Before you can import an image, you must load() it.

Note: This function was formerly named importGun(), which is now deprecated.

Syntax

importChannel(

Channel @ <"channel name">

[Source @ <user-defined Media object name>]

[layers @ <"layer list">] // (PSD files only)

[RType @ <"bit-depth">]

);

Parameters

Note: Color value parameters to functions supporting CMYK are interpreted as CMYK colors if
the raster to which they are applied is CMYK.

Source - specifies the image to add by its user-defined Media object name.

Note: The Name parameter is now deprecated.

layers - for PSD files, specifies the layers to be included. The layer numbers begin at 0 (background)
and go up. For more information see “load()” on page 137.

Rtype - specifies the target bit depth. The supported bit depths: RGB-24, RGBA-32, CMYK-32,
CMYKA-40, Gray-8, RGB-15, RGB-16, RGBA-16.

Valid channel names are:

• Blue, Green, Red, Alpha

• Cyan, Magenta, Yellow, Black (CMYK-space)
• Brightness, Saturation, Hue (HSV-space)
• Brightness2, Saturation2, Hue2 (HLS-space)

The default value is Blue.

Note: If you attempt to import an alpha channel into a 24-bit image, it will automatically be
converted to a 32-bit image.

Example

var image1 = new Media();

var image2 = new Media();

132

MediaRich CORE 6.2 • Programmer's Guide

image1.load(name @ "peppers.tga");

image2.load(name @ "Bears.tga");

image2.scale(xs @ image1.getWidth(), ys @ image1.getHeight());

image1.importChannel(channel @ "red", source @ image2);

image1.save(type @ "jpeg");

infoText()

The infoText()method returns the information about text.

Syntax

infoText(

[font @ <"font">],

[size @ <"size">],

[style @ <"style">])

Return Values

ascent - the font ascent

descent - the font descent

height - the font height

averageWidth - the average character width

maxWidth - themaximum character width

weight - the font weight

italic - returns 1 if italic

underlined - returns 1 if underlined

strikeout - returns 1 if strikeout

overhang - extra width that may be added to some fonts by GDI

Parameters

font - specifies the TrueType or PostScript font family name to be used, for example, Arial. For
more information about howMediaRich methods work with fonts and font files, see the “drawText
()” on page 102.

size - sets the point size of the font to be used. The default size is 12.

style - specifies the font style. You can use any combination ofmodifiers. Each modifier should be
separated by a space character.

Note: The Style parameter is not available ifMediaRich is running on Mac or Linux.

133

CHAPTER 4 MediaScript Objects and Methods

Weight modifiers modify the weight (thickness) of the font. Valid weight values, in order of increasing
thickness, are:

• thin

• extralight or ultralight
• light

• normal or regular
• medium

• semibold or demibold (semi or demi are also acceptable)
• bold

• extrabold or ultrabold (extra or ultra are also acceptable)
• heavy or black

Other Style parameter values are Underline, Italic or Italics, and Strikethru or
Strikeout).

Note: You can combine Style parameter values. For example: Style @ “Bold Italic”

line()

The line()method draws a line across the image based on the specified parameters. This method
accepts all composite() parameters except HandleX and HandleY. For information about these
parameters, see “composite()” on page 91.

The foreground color may vary with this function, depending on the original Media object. If the
object has a set foreground color, or it is set with the setColor() function, MediaRich uses the set
color. If the object has no set foreground color, MediaRich does the following:

• For objects with 256 colors or less, MediaRich uses the last color index.
• For objects with 15-bit or greater resolution, MediaRich uses white.

Note: Using line() to mask frames within a JavaScript for loop can result in initially poor
anti-aliasing. To maintain optimal anti-aliasing, place themasking line outside the loop.

Syntax

line(

X1 @ <pixel>,

Y1 @ <pixel>,

X2 @ <pixel>,

Y2 @ <pixel>,

[Opacity @ <value 0..255>]

[Unlock @ <true, false>]

[Color @ <color in hexadecimal, rgb, or cymk>]

[Index @ <value 0..16777215>]

[Saturation @ <value 0..255>]

134

MediaRich CORE 6.2 • Programmer's Guide

[PreserveAlpha @ <true, false>]

[Blend @ <"blend-type">]

[Width @ <value>]

[Smooth @ <true, false>]

);

Parameters

X1 - indicates (in pixels) the x-axis coordinate of the line start point. This parameter is required and
has no default value.

Y1 - indicates (in pixels) the y-axis coordinate of the line start point. This parameter is required and
has no default value.

X2 - indicates (in pixels) the x-axis coordinate of the line end point. This parameter is required and has
no default value.

Y2 - indicates (in pixels) the y-axis coordinate of the line end point. This parameter is required and has
no default value.

Opacity - specifies opacity of the drawn object. The default value is 255 (completely solid).

Unlock - if set to true, causes the line to display only where the specified color value appears in the
current (background) image. The default is false.

Color - specifies the color to be used for the line. The default is the foreground color. This parameter
supports a hexidecimal, RGB, or CMYK color specification:

• hexidecimal - color value expressed as a value from 0x000000 to 0xFFFFFF (RGB colorspace) or from
0x00000000 to 0xFFFFFFFF (CMYK colorspace)

• RGB - color value expressed as a value from 0 to 16,777,215
• CMYK - color value expressed as a value from 0 to 4,294,967,295

Colorspace

Always pass a color value appropriate to the colorspace. You can ensure this using the
getPixelFormat() function in your script and then using different hexadecimal values for the RGB
and the CMYK colorspaces in an IF/THEN construction. If getPixelFormat() returns "CMYK," use
the CMYK value (0x plus eight more digits), and otherwise use the RGB value (0x plus six more
digits).

Index - colorizes the line using the available color palette from the source image (as an alternative to
the Color parameter).

Note: You cannot specify values for both the Color and Index parameters.

Saturation - specifies a value used for weighting for the change in saturation for destination pixels.
A value of 255 changes the saturation of pixels to the specified color. A value of 128 changes the
saturation of a pixel to a mid-value between the pixel’s current color and the specified color.

135

CHAPTER 4 MediaScript Objects and Methods

Note: The Saturation parameter only functions when the Blend parameter is set to
colorize.

PreserveAlpha - when set to true, preserves the alpha channel of the target image as the alpha
channel of the resulting image. The default is false.

Blend - specifies the type of blending used to combine the drawn object with the images. Blend
options are: Normal, Darken, Lighten, Hue, Saturation, Color, Luminosity, Multiply,
Screen, Dissolve, Overlay, HardLight, SoftLight, Difference, Exclusion, Dodge,
ColorBurn, Under, Colorize (causes only the hue component of the source to be stamped down
on the image), and Prenormal.

Note: The Burn option is now deprecated; ColorBurn results in the same blend.

Width - specifies the thickness (in pixels) of the line. The default is 1.

Smooth - when set to true, makes the edges of the line smooth, preventing a pixellated effect. The
default is false.

Important: If you are using smoothing for media that contains an alpha channel and you plan
to save it to a format that does not support alpha channels, it is necessary to use convert() to
remove the alpha channel before using this operation. Or, as an alternative, you can composite
themodified image onto an opaque background before saving the image. Without this
additional handling, themedia will not look correct in a non-alpha file format.

Example

var image = new Media();

image.load(name @ "logobg.tga");

image.line(X1 @ 45, Y1 @ 15, X2 @ 135, Y2 @ 90, Width @ 3);

image.line(X1 @ 135, Y1 @ 60, X2 @ 135, Y2 @ 90, Width @ 3);

image.line(X1 @ 105, Y1 @ 90, X2 @ 135, Y2 @ 90, Width @ 3);

image.save(type @ "jpeg");

136

MediaRich CORE 6.2 • Programmer's Guide

load()

The load()method loads an image into theMedia object from the specified file. For a detailed list
of file format load (read) support, see “File Format Support” on page 364.

Note: In MediaRich version 3.6 and later, load() does not perform any color conversion. For
instance, additional parameters for Color Profile Specifications srcProfile, destProfile,
and intent are not supported. You must explicitly call convert() or colorConvert() to
change an image type.

The following file formats support file sizes greater than 4GB: .tif (BigTIFF), .psb, and .pdf.

Important: Loading, modifying, and saving very large image files can result in errors or crashes
when the system cannot accommodate these files. For more information, see “Memory Issues
with Very Large Image Files” on page 362.

Also, when working with large images, ensure that your page file size is set to "System Managed
Size" on the enabled drive and make sure that the drive has enough space to contain it.

The following file formats support the CMYK colorspace: .ai, .eps, .pdf, .psd, .tif, and .jpg.

Syntax

load(

[name @ <"filename", "http://server_name/../filename",
"ftp://username:password@ftp.server_name/../ filename", "ftp://ftp.server_
name/../filename", "virtualfilesystem:/filename">]

[type @ <"typename">]

[detect @ <true, false>]

[LoadMetadata @ <true, false>]

[frames @ <"frames list">] // TIFF, GIF, PS, PDF, INDD files only

[layers @ <"layer list">] // PSD files only

[collapsed @ <true, false>] // PSD files only

[VisibleOnly @ <true, false>] // PSD files only

[PreviewAlpha @ <true, false>] // PSD files only

[fillalpha @ <true, false>] // PNG files only

[screengamma @ <value 0..10>] // PNG files only

[waplook @ <true, false>] // WBMP files only

[dpi @ <value 1..32767>] // AI, EPS, PDF, and PS files only

[useCMYK @ <true, false>] // AI, EPS, PDF, and PS files only

[intermediateFileName @ <"filePath">] // AI, EPS, PDF, and PS files only

[IgnoreHeader @ <true, false>] // AI, EPS, PDF, and PS files only

[MaxWidth @ <integer value>] // TIFF, JPEG, and PS files only

[MaxHeight @ <integer value>] // TIFF, JPEG, and PS files only

[AllowMangled @ <true, false>] // PNG only

[resolution @ <integer value>] // multi-resolution TIFF

137

CHAPTER 4 MediaScript Objects and Methods

[time @ <seconds>] // SWF files only

[Xs @ <size>] // SWF files only

[Ys @ <size>] // SWF files only

[InterpolationQuality @ <"off"><"auto"><"linear"><"vng"><"ahd"> // Raw Camera only

[WhiteBalance @ <"auto"><"camera">] // Raw Camera only

[AdjustWhiteBalance @ "v1, v2, v3, v4"] // Raw Camera only

[ColorSpace @ <"raw"><"srgb"><"adobe"><"wide"><"prophoto"><"xyz">] // Raw

[NoFujiRotate @ <true><false>] // Raw Camera only

[UseFujiSecondary @ <true><false>] // Raw Camera only

[BadPixelFile @ "<filename>"] // Raw Camera only

[ExternalJPEGFile @ "<filename>"] // Raw Camera only

[FourColorInterpolate @ <true><false>] // Raw Camera only

[HighlightMode @ <0..9>, default = 0] // Raw Camera only

[BlackPoint @ <integer value>] // Raw Camera only

[Brightness @ <0..1>, default = 1.0] // Raw Camera only

[BilateralFilterDomain @ <floating point value>] // Raw Camera only

[BilateralFilterRange @ <floating point value>] // Raw Camera only

[HalfSize @ <true, false >] // Raw Camera only

[Thumbnail @ <true, false >] // Raw Camera only

[Brighten @ <true, false >] // Raw Camera only

[UseEmbeddedMatrix @ <true, false >] // Raw Camera only

[Select @ <number>] // Raw Camera only

[NoStretchRotateRaw] @ <true, false > // Raw Camera only

[DocMode @ <true, false >] // Raw Camera only

[DocModeNoScaling @ <true, false >] // Raw Camera only

[NoiseThreshold @ <number>] // Raw Camera only

[FixContrast @ <true, false>] // Raw Camera only

[PassThrough @ <string>] // Raw Camera only

[Dpi @ <value 1..32767>] // Office only

[Pages @ <pages>] // Office only

[Brightness @ <brightness>] // Office only

[Dither @ <dither>] // Office only

[ImageWidth @ <width>] // Office only

[ImageHeight @ <height>] // Office only

[Grayscale @ <true, false>] // Office only

[Scale @ <scale>] // Office only

);

Note: DPI is supported for non-bitmap (vector) file formats such as AI, EPS, PDF, PS and all
Office files in the LibreOffice environment. It has no effect on the loading of bitmap (raster)
images such as BMP, Targa, TIFF, GIF, and JPEG.

138

MediaRich CORE 6.2 • Programmer's Guide

Basic Parameters

Use the following parameters for basic load() functionality.

Parameter Usage

name Specifies the filename and path (full or relative) of the file to be loaded
By default, MediaRich looks for Media in the read file system, which points to the
following directory: MediaRichCore/Shared/Originals/Media. Refer to the
MediaRich CORE Installation and Administration Guide for more information
about modifying this default directory.
You can also load a file from an HTTP or FTP URL using the this parameter.
Note: The functionality of loading files from HTTP or FTP sources is enabled by
default. If you need to disable this for security reasons, contact your MediaRich
administrator.

type Specifies the expected file type
When this parameter is not specified, the type is derived from the file extension.
Valid type names are: bmp, eps, gif, jpeg, png, pict, pcx, pdf, photoshop, ps, tiff,
targa, and wbmp.
Note: Some image formats are module and/or platform specific. Please visit the
support section of the Equilibrium Web site for the most current list.

detect Indicates that if a matching file type is not found, or if the load returns with a
FileMangled or FileTypeWrong error, the system will attempt to automatically
determine the file’s type and load it accordingly.
Note: Some image formats do not support the this parameter. If the filename
extension is not a recognized type in such a case, the load method returns a "File
type wrong" error. Some formats in this list include PDF, AI, EPS, EPSF, PS, and all of
the formats handled by LibreOffice.

LoadMetadata When true, loads any Exif, IPTC, or XMP metadata associated with the image
The default is value false. For more information about metadata support, see
“MediaRich Metadata Support” on page 326.

Loading PNG Files

The load()method supports additional parameters used for loading .png files.

Parameter Usage

fillalpha When set to true, fills transparent and translucent pixels with the
image background color
The default is false.

screengamma Specifies a floating gamma point, causing the reader to perform a
gamma correction if the file contains a specified gamma value
The default is 0 (no correction).

139

CHAPTER 4 MediaScript Objects and Methods

Parameter Usage

AllowMangled When set to true, allows a mangled PNG image to be partially read into
the Media object
The image might be distorted, but you can salvage as much of it as
possible.
The default is false.
This is supported to correct problems with other png software and
reports an error and aborts if the image cannot be fully read
successfully.

Loading JPEG Files

The load()method supports the following additional parameters used for loading .jpeg and .jpg
files.

Parameter Usage

MaxWidth

MaxHeight

Set the maximum width and height for the JPEG image
The file is not deleted after the operation completes.
For more information, see “Loading Files with MaxHeight and
MaxWidth” on page 153.

Loading TIFF Files

The load()method supports the following additional parameters used for loading .tif and .tiff files.

Parameter Usage

resolution Specifies a value used to read a specified resolution from amulti-
resolution TIFF image
The value is an integer ranging from 0 to the number of resolutions - 1. The
highest resolution (the largest image) is 0. Each subsequent resolution
gives an image of half the dimension of the previous.
For example, a resolution of 2 results in an image with width and height
that is 1/4 of the original. A resolution of 4 results in an image wiht width
and height that is 1/16 the original. If the resolution does not exist, a
NoMedia error is returned.

MaxWidth

MaxHeight

Set the maximum width and height for the JPEG image
The file is not deleted after the operation completes.
For more information, see “Loading Files with MaxHeight and MaxWidth”
on page 153.

Loading Raw Camera Files

Note: Some of the extensions on Raw Camera files can conflict with other file types and cause
issues with loading. For more information about addressing this issue, see “Loading Raw

140

MediaRich CORE 6.2 • Programmer's Guide

Camera Files” on page 361.

The load()method supports the following additional parameters used for loading Raw Camera
files.

Parameter Usage

InterpolationQuality Sets the interpolation quality mode
Defaults to ahd, which is the slowest but highest quality. Controls how
the color pixels from the CCD are interpolated from a non-linear color
pattern to a single RGB pixel.
linear uses a linear algorithm; this is the fastest but the lowest
quality.
vng forces a threshold-based variable number of gradients algorithm
to be used.
ahd forces an adaptive homogeneity-directed algorithm to be used,
and is usually the default when auto is specified.
off, no interpolation is done and you get a grayscale image with the
CCD pixel data just as it came from the camera. Controls the -q param
in dcraw.

WhiteBalance Specifies the white balance value
The default is auto, but specify camera to use the white balance
values (if available) for the camera.

AdjustWhiteBalance Specifies multipliers to adjust the image white balance manually
This overrides the WhiteBalance parameter. The values are floating
point numbers. If you specify 0 for the first value, there is no manual
white balance applied.

ColorSpace Specifies the colorspace to use when converting the image from raw
data to an actual image.
Default is srgb.
raw causes colorspace conversion to be disabled.

NoFujiRotate When set to true, disables the default rotation of Fuji Super CCD
images
Fuji Super CCD images are natively stored at a 45 degree angle, which
is why the default is to rotate these images so they look normal.

BadPixelFle Specifies the path to the "bad pixel file" to use for image correction
If you have “bad pixel file” that indicates which CCD elements are
defective in your camera, you can specify the full path to that file and
the interpolation code will try and work around those bad pixels. By
default it will not exclude any pixels.

141

CHAPTER 4 MediaScript Objects and Methods

Parameter Usage

ExternalJPEGFile Specifies the path for external image information file
Some cameras only save raw images as a “debug” mode feature, and
that data sometimes does not contain all of the information you want
to have associated with the image. If you specify the path to this file
with this parameter and it is a camera that supports this external
information, it loads that information as part of the image. By default it
does not look for external files.

FourColorInterpolate When set to true, interpolates RGGB as four colors instead of three
Defaults to false.

HighlightMode Specifies the highlight recovery mode for clipped highlights
0 (the default) omits any recovery, 1 specifies clip channel data, 2
through 9 specify the attempt to recover the clipped channel data.

BlackPoint Specifies the black point to use, instead of the one specified in the
image data
Default is to use image value.

Brighten When set to true, automatically brightens the image
This is equivalent to the -w param in dcraw.
Defaults to false.

Brightness Specifies the brightness setting for the image
Defaults to 1.72 when "Brighten" is disabled or 1.00 if "Brighten" is
enabled.
Lower values darken the overall image. Valid values range from 0.0 to
100.0.

BilateralFilterDomain

BilateralFilterRange

Specify the bilateral filter domain and range
When specified, a bilateral filter is applied to the image data to reduce
the noise present in CCDs. By default no filtering is done.
Important: If you specify either of these values, you must specify both
or a missing parameter error results.

HalfSize When set to true, loads the image at half the width and height for
greater speed
This is equivalent to the -h param in dcraw.
Defaults to false.

Thumbnail When set to true, loads the image from the embedded thumbnail, if
present
This is equivalent to the -e param in dcraw.
Defaults to true.

142

MediaRich CORE 6.2 • Programmer's Guide

Parameter Usage

UseEmbeddedMatrix When set to true, uses the embedded color matrix in the file to
adjust the colors of the image
This option only affects Olympus, Leaf, and Phase 1 raw camera
images.
Defaults to true.

Select Controls which image is returned from raw files that can contain
multiple images
This is equivalent to the -s param in dcraw.
Defaults to 0.

NoStretchRotateRaw When set to true, equivalent to the -j param in dcraw.
Defaults to false.

DocMode When set to true, equivalent to the -d param in dcraw.
Defaults to false.

NoiseThreshold When set to true, causes a noise reduction filter to be applied to the
image
This is equivalent to the -n param in dcraw.
Defaults to false.

FixContrast When set to true, helps to adjust the images to better match that of
other software
Defaults to true.
Note: This parameter is ignored when the image comes from the
thumbnail, as the image should technically already be auto-adjusted.

PassThrough Passes command line string as options straight through to dcraw
You can use this for additional control of dcraw for any parameters
that are not supported via load()
Note: Specifying some direct dcraw parameters can cause the image to
fail to load, such as redirecting it to a file instead of standard output
like this reader expects.

Loading AI, PS, EPS, and PDF Files

The load()method supports additional parameters used for loading .ai, .ps, .eps, and .pdf files.

Important: Illustrator (.ai) files can be rasterized only when the PDF information is embedded.
In CS3 and earlier releases, the Illustrator default behavior was to save .ai files with PDF
information. With the release of CS4, the “Create PDF compatible File” option is disabled by
default for a Save As operation. All sample files included with CS4 do not have the embedded
PDF information.

143

CHAPTER 4 MediaScript Objects and Methods

Parameter Usage

dpi Sets the resolution (Dots Per Inch) at which data is rendered
The default is 150, the current value of “tiff_dpi”, specified in the
ps2xxx.ini file. If tiff_dpi is not specified, the default is 75.
If you use Ghostscript, the default is 72.
Note: You can modify this parameter to specify a lower DPI if you encounter
the FlySDK failed to render the file error when loading any of
these file types.
Important: DPI is supported for non-bitmap (vector) file formats such as AI,
EPS, PDF, PS and all Office files in the LibreOffice environment. It has no
effect on the loading of bitmap (raster) images such as BMP, Targa, TIFF,
GIF, and JPEG.

useCMYK When set to true, loads any CMYK file as CMYK instead of converting to
RGB
The default value for this parameter is false, so all CMYK PS, EPS, and PDF
files are converted to RGB by default.

intermediateFileName Specifies the intermediate TIFF file used to render the file
The file is not deleted after the operation completes.
Instead of rendering pages into the source Media, you use the load()
function to render eps/pdf/ps/ai files into a multi-frame TIFF file. This
method avoids having to read an entire multi-page file into memory at
once. Pages can still be loaded into the source Media as well.

IgnoreHeader When set to true (default), causes the reader to not use the information in
the EPS header line in the file.

144

MediaRich CORE 6.2 • Programmer's Guide

Photoshop-specific parameters

When loading a Photoshop file, MediaRich by default loads a single raster, created by the Photoshop
application. Photoshop creates this raster based on the visible layers contained in the PSD file.

Parameter Usage

collapsed When set to false, overrides the single raster default loading and
instead loads all layers

layers Specifies the layers to load and the order in which to load them
The layer numbers begin at 0 (background). To specify all layers
(including non-visible layers) use the wild-card notation * inside of
quotes. The visibleOnly() function can used to load only the visible
layers of a PSD file.
Note:MediaRich loads only the image data from the layers and ignores
all other effects. To preserve such effects, merge the effects into the
layer data in Photoshop. You can specify the layers out of order, and
they are composited accordingly.

VisibleOnly When set to true and loading photoshop layers (collapsed set to
false), loads only the layers designated as visible
The default is false.

PreviewAlpha When set to false and layers are not specified, does not load the
preview alpha channel in the image preview
PreviewAlpha defaults to 0, except when there is no special
background layer in the PSD/PSB file and individual layers are not
loaded or collapsed is set to false. When those conditions are met, it
defaults to 1 (load the first preview image alpha channel).
If this parmeter is explicitly specified, the setting overrides any of the
defaults and can load any available preview image alpha if that alpha
channel is present in the file. With the default (0), no preview alpha is
loaded.

MaxWidth

MaxHeight

Set the maximum width and height for the Photoshop image
The file is not deleted after the operation completes.
For more information, see “Loading Files with MaxHeight and
MaxWidth” on page 153.

When you specify the layers parameter, the layer list must be contained in quotes and consists of
comma-separated entries. You can specify ranges (“0-2”) or individual layers (“0,2”).

Note: When you specify a comma-separated list of layers, do not leave any spaces after the
commas.

If the Photoshop file has named layers, you can use the layer names (up to 31 characters) in place of
layer numbers. You can also use * as a wildcard when specifying layers. For example:
image.load(name @ "horizontal.psd", layers @ "B*")

145

CHAPTER 4 MediaScript Objects and Methods

Note: Layers of grayscale Photoshop files are not supported.

This line of script loads all layers whose names begin with “B” (such as Boy, Baseball, Ballcap, and so
on). The layers command is case-sensitive, so the example line of script will not load layers that begin
with a lowercase “b.”

Note: All Photoshop Adjustment Layers must bemerged into the layer image data prior to use
in MediaRich.

Loading Vector Files Using Ghostscript

If the native rendering of vector images like .pdf or .eps does not meet all of your requirements, you
can use Ghostscript as an alternative. Using Ghostscript requires installation on the samemachine as
theMediaRich Server and adding the Ghostscript .bin path to the local.properties file. For more
information, refer to theMediaRich CORE Installation and Administration Guide.

The load()method supports the following parameters for loading vector files via Ghostscript.
[Adjoin]

[AntiAlias]

[Dpi=<integer 1..32767>]

[IntermediateFileName=<text>]

[gsopts @ "-dEPSCrop"]

[NoClip]

[Pages=<text>]

[UseCIEColor]

[UseCMYK]

[usecropbox]

[showGSCommand]

Note: The Adjoin, AntiAlias, gsopts, NoClip, UseCIEColor, usecropbox, and
showGSCommand parameters work with a Ghostscript-enabled installation, not with the default
MediaRich native vector image support.

Loading Microsoft Office Files

The complete LibreOffice 6.0must be installed to enable the Office and other file type support in
MediaRich.

For more information about installing LibreOffice and enabling support for Microsoft Office files, refer
to theMediaRich CORE Installation and Administration Guide.

If the default LibreOffice environment does not meet your requirements for processing Office files,
you can disable or not install LibreOffice and install the BlackIce drivers on theWindows platform.
For more information about installing and configuring these drivers, , refer to theMediaRich CORE
Installation and Administration Guide.

146

MediaRich CORE 6.2 • Programmer's Guide

PowerPoint documents (*.ppt or *.ppsx)

Note: Advanced formatting of PowerPoint documents is handled by LibreOffice or the BlackIce
drivers when loading the .ppt or .ppsx file. This formatting might not match the pagination
applied by theMicrosoft Office application.

For the default LibreOffice environment:
load(Dpi @ <value 1..32767>, Pages @ <pages>);

For the BlackIce/Microsoft Office environment:
load(ImageWidth @ <width>, ImageHeight @ <height>, Pages @ <pages>, GrayScale @
<true, false>);

Loads a PowerPoint file into a multi-framemedia object. Individual slides can be accessed with the
getFrame()method.
Dpi @ <value 1..32767>

DPI controls the size that images come are loaded. When Dpi is declared for an Office file, MediaRich
will rasterize the source data at a smaller or larger pixel-size in relation with the smaller or larger
amount declared. If Dpi is undeclared, source data coming in from thesemechanisms will be
rasterized at 150 DPI.

Note: DPI is supported for non-bitmap (vector) file formats such as AI, EPS, PDF, PS and all
Office files in the LibreOffice environment. It has no effect on the loading of bitmap (raster)
images such as BMP, Targa, TIFF, GIF, and JPEG.

ImageWidth @ <width>

Optional integer parameter to define the output width in pixels. Default is the slide width in the
presentation.

Note: ImageWidth is supported in the BlackIce/Microsoft Office environment and does not
apply to rasterizing such documents using the default LibreOfficemechanism.

ImageHeight @ <height>

Optional integer parameter to define the output height in pixels. Default is the slide height in the
presentation.

Note: ImageHeight is for the BlackIce/Microsoft Office environment and does not apply to
rasterizing such documents using the default LibreOfficemechanism.

Pages @ <pages>

Optional integer parameter to define the slides to be imaged. Default is all slides.
Grayscale @ <true, false>

Optional Boolean parameter to specify grayscale. Default is false.

147

CHAPTER 4 MediaScript Objects and Methods

Note: Greyscale is supported for the BlackIce/Microsoft Office environment and does not apply
to rasterizing such documents using the default LibreOfficemechanism.

Brightness @ <brightness>

Optional integer parameter to specify image brightness. Only affects grayscale images. Range is 0-
199. Default is 100.

Note: Brightness is supported for the BlackIce/Microsoft Office environment and does not
apply to rasterizing such documents using the default LibreOfficemechanism.

Dither @ <dither>

Optional enumerated parameter. Possible values are: "None", "Floyd-Steinberg", "Jarvis-Judice-
Ninke", "Smooth", "Sharp", "Stucki", and "Threshold" representing the various dithering algorithms
supported by the driver. Only affects grayscale images. Default is "Floyd-Steinberg".

Note: Dither is supported for the BlackIce/Microsoft Office environment and does not apply to
rasterizing such documents using the default LibreOfficemechanism.

A PowerPoint document is always presented in the original's aspect ratio of width to height. If both
height and width are specified and are not in the same ratio as the original document's, the resulting
image will be padded in white to conform to the requested height and width.
IntermediateFileName @ "<pathname>"

This parameter takes a pathname of the PDF file to generate instead of loading the data into the
media object. This parameter also works on OpenOffice -Write, Draw, Calc and Impress Documents.

Word Documents (*.doc)

Note: Pagination and advanced formatting ofWord documents is handled by LibreOffice or the
BlackIce drivers when loading the .doc file. This pagination and formatting might not match the
pagination applied by theMicrosoft Office application.

For the default LibreOffice environment:
load(Dpi @ <dpi>, Pages @ <pages>);

For the BlackIce/Microsoft Office environment:
load(ImageWidth @ <width>, ImageHeight @ <height>, Pages @ <pages>, GrayScale @
<true, false>);

Loads a Microsoft Word document into a multi-framemedia object. Individual pages can be
accessed with the getFramemethod.
Dpi @ <value 1..32767>

DPI controls the size that images come in. When Dpi is declared, MediaRich will rasterize the source
data at a smaller or larger pixel-size in relation with the smaller or larger amount declared. If Dpi is
undeclared, source data coming in from thesemechanisms will be rasterized at 150 DPI.

148

MediaRich CORE 6.2 • Programmer's Guide

Note: DPI is supported for non-bitmap (vector) file formats such as AI, EPS, PDF, PS and all
Office files in the LibreOffice environment. It has no effect on the loading of bitmap (raster)
images such as BMP, Targa, TIFF, GIF, and JPEG.

ImageWidth @ <width>

Optional integer parameter to define the output width in pixels. Default is the page width in pixels as
if printed at 72 DPI.

Note: ImageWidth is supported for the BlackIce/Microsoft Office environment and does not
apply to rasterizing such documents using the default LibreOfficemechanism.

ImageHeight @ <height>

Optional integer parameter to define the output height in pixels. Default is the page height in pixels
as if printed at 72 DPI.

Note: ImageHeight is supported for the BlackIce/Microsoft Office environment and does not
apply to rasterizing such documents using the default LibreOfficemechanism.

Pages @ <pages>

Optional integer parameter to define the pages to be imaged. Default is all pages.
Grayscale @ <true, false>

Optional Boolean parameter to specify grayscale. Default is false.

Note: Greyscale is supported for the BlackIce/Microsoft Office environment and does not apply
to rasterizing such documents using the default LibreOfficemechanism.

Brightness @ <brightness>

Optional integer parameter to specify image brightness. Only affects grayscale images. Range is 0-
199. Default is 100.

Note: Brightness is supported for the BlackIce/Microsoft Office environment and does not
apply to rasterizing such documents using the default LibreOfficemechanism.

Dither @ <dither>

Optional enumerated parameter. Possible values are: "None", "Floyd-Steinberg", "Jarvis-Judice-
Ninke", "Smooth", "Sharp", "Stucki", and "Threshold" representing the various dithering algorithms
supported by the driver. Only affects grayscale images. Default is "Floyd-Steinberg".

Note: Dither is supported for the BlackIce/Microsoft Office environment and does not apply to
rasterizing such documents using the default LibreOfficemechanism.

For Word documents, either the ImageWidth can be specified or the ImageHeight, but not both. The
aspect ratio of the document is always preserved.

149

CHAPTER 4 MediaScript Objects and Methods

IntermediateFileName @ "<pathname>"

This parameter takes a pathname of the PDF file to generate instead of loading the data into the
media object. This parameter also works on OpenOffice -Write, Draw, Calc and Impress Documents.

Excel documents (*.xls)

Note: Pagination and advanced formatting of Excel documents is handled by LibreOffice or the
BlackIce drivers when loading the .xls file. This pagination and formatting might not match the
pagination applied by theMicrosoft Excel application.

For the default LibreOffice environment:
load(Dpi @ <value 1..32767>, Pages @ <pages>);

For the BlackIce/Microsoft Office environment:
load(ImageWidth @ <width>, ImageHeight @ <height>, Pages @ <pages>, GrayScale @
<true, false>, Scale @ scale);

Loads a Microsoft Excel document into a multi-framemedia object. Individual worksheets can be
accessed with the getFramemethod.
Dpi @ <value 1..32767>

DPI controls the size that images come in. When Dpi is declared, MediaRich will rasterize the source
data at a smaller or larger pixel-size in relation with the smaller or larger amount declared. If Dpi is
undeclared, source data coming in from thesemechanisms is rasterized at 150 DPI.

Note: DPI is supported for non-bitmap (vector) file formats such as AI, EPS, PDF, PS and all
Office files in the LibreOffice environment. It has no effect on the loading of bitmap (raster)
images such as BMP, Targa, TIFF, GIF, and JPEG.

ImageWidth @ <width>

Required integer parameter to define the output width in pixels.

Note: ImageWidth is supported for the BlackIce/Microsoft Office environment and does not
apply to rasterizing such documents using the default LibreOfficemechanism.

ImageHeight @ <height>

Required integer parameter to define the output height in pixels.

Note: ImageHeight is supported for the BlackIce/Microsoft Office environment and does not
apply to rasterizing such documents using the default LibreOfficemechanism.

Pages @ <pages>

Optional integer parameter to define the worksheets to be imaged. Default is all worksheets.
Grayscale @ <true, false>

Optional Boolean parameter to specify grayscale. Default is false.

150

MediaRich CORE 6.2 • Programmer's Guide

Note: Greyscale is supported for the BlackIce/Microsoft Office environment and does not apply
to rasterizing such documents using the default LibreOfficemechanism.

Scale @ <scale>

The scale factor for the worksheet image, ranging from 0.000000 to 1.000000.

Note: Scale is supported for the BlackIce/Microsoft Office environment and does not apply to
rasterizing such documents using the default LibreOfficemechanism.

Brightness @ <brightness>

Optional integer parameter to specify image brightness. Only affects grayscale images. Range is 0-
199. Default is 100.

Note: Brightness is supported for the BlackIce/Microsoft Office environment and does not
apply to rasterizing such documents using the default LibreOfficemechanism.

Dither @ <dither>

Optional enumerated parameter. Possible values are: "None", "Floyd-Steinberg", "Jarvis-Judice-
Ninke", "Smooth", "Sharp", "Stucki", and "Threshold" representing the various dithering algorithms
supported by the driver. Only affects grayscale images. Default is "Floyd-Steinberg".

Note: Dither is supported for the BlackIce/Microsoft Office environment and does not apply to
rasterizing such documents using the default LibreOfficemechanism.

For Excel documents, that portion of the worksheet that fits in the specified width and height is
imaged. Use the scale parameter to control howmuch of the worksheet appears.
IntermediateFileName @ "<pathname>"

This parameter takes a pathname of the PDF file to generate instead of loading the data into the
media object. This parameter also works on OpenOffice -Write, Draw, Calc and Impress Documents.

In addition, only worksheets are imaged. Charts are only imaged if embedded within a worksheet.

Also, a default installation ofMicrosoft Excel will not allow an .xls document containing macros to
open without user intervention. If there is a possibility of this type of document being processed, the
default settings in Excel must be changed. In that program, use Tools >Macro > Security to make the
necessary changes.

Loading WBMP Files

The load()method supports the following additional parameter used for loading .wbmp files.

Parameter Usage

waplook When set to true, sets the image palette to simulate the look of an LCD
screen on an actual WAP device

151

CHAPTER 4 MediaScript Objects and Methods

Loading SWF Files

SWF reading works like other multpage/multiframe readers. You can specify the frame or frames you
want to load into themedia object with the frame or frames parameter used with Media.load().
Ranges such as "4-10" for example are also valid as are specific frame numbers, such as "4,8,20".

You can then operate on the frames as you would with any multipage/multiframemedia object,
using Media.getFrame().

Note: Extracting multiple frames causes a temp image file to be created for each frame on disk,
so do not try to convert entire movies this way since it will take a very long time and may cause
disk full errors.

Also, because it is NOT possible to seek in SWF files, if you specify frames deep into themovie
the extraction can take a very long time because themoviemust be played back sequentially
internally.

The frames have no times present—if you want to convert a short sequence of frames into a GIF
animation, you must specify the frame rate during the save() operation.

The load()method support the following additional parameters used for loading .swf files.

Parameter Usage

time Specifies the number of seconds into the movie to return a single frame
This parameter always returns a frame from readable movies. Requesting a
specific frame could fail if it is beyond the number of frames in the movie
or past user input sections.

Xs

Ys

Force the frame to be rendered at a specified size
If these parameters are not specified, the default size stored in the SWF file
is used.

SWF Examples

var m = new Media();

m.load(name @ "Example.swf", time @ 10);

m.save(name @ "out.tif");

m.load(name @ "Example.swf", frame @ 45);

m.save(name @ "out.jpg");

m.load(name @ "Example.swf", frames @ "0,10,20");

m.save(name @ "out.tif");

m.load(name @ "Example.swf", frames @ "7-12");

m.save(name @ "out.tif");

152

MediaRich CORE 6.2 • Programmer's Guide

Loading Multiple-Page/Frame Files

The load()method supports the frames parameters for loading multiple-page/frame files (.tif, .gif,
.ps, .pdf, .eps, and .indd) files.

By default, all pages/frames are loaded. To load specific pages, specify a page range. frame and
page are valid aliases for frames. Any of the following are valid:

• frames “3-9”

• frames 7

• frame 12

• frame “4-9”

Note: Alpha channels in .ps/.pdf/.eps documents are only preserved when a single page is
specified

Loading Files with MaxHeight and MaxWidth

Instead of rendering pages into the sourceMedia, you can use the load()method to render
eps/pdf/ps/ai files into a multi-frame TIFF file. This method avoids having to read an entire multi-
page file into memory at once. Pages can still be loaded into the sourceMedia as well.

The image dimensions are constrained so as to keep the aspect ratio correct. The constraining
dimension is whichever one stored in the image passes themaximum set, or if both do, whichever
one has the largest value.

Important: If not specified, the MaxWidth and MaxHeight parameters default to the values
defined in the properties file global.Media.Load.MaxWidth and
global.Media.Load.MaxHeight, or 8192 for each if they are not defined anywhere. A value
of 0 (zero) disables downscaling so images are loaded at full resolution. These parameters work
independently, and scaling is always proportional. So if, for example, width is specified as 0 and
the height is specified as 4000, the image will be reduced proportionally as necessary so that the
height is not larger than 4000.

Any image that is larger than these limits will be automatically scaled down as te image is
loaded, pixel row by pixel row, so as to greatly reduce thememory footprint of large images and
make the loading of extremely large images possible.

For more information about setting MediaLoadMaxHeight and MediaLoadMaxWidth to
manage automatic scale-down, refer to theMediaRich CORE Server Installation and
Administration Guide .

loadAsRgb()

The loadAsRgb()method is an add-on to theMedia object that acts exactly like load() does
when an RGB file is read. When a CMYK file is read, the images are converted to RGB using any
embedded ICC profile and the default RBGB profile. If there is no ICC profile embedded in the file, the

153

CHAPTER 4 MediaScript Objects and Methods

default CMYK profile is used. This function is defined in Sys/media.ms. See “MediaRich Color
Management” on page 318 for more information.

Syntax

loadAsRgb(

[name @ <"filename">]

[type @ <"typename">]

[detect @ <true, false>]

[layers @ <"layer list">] // (PSD files only)

[fillalpha @ <true, false>] // (PNG files only)

[screengamma @ <value 0..10>] // (PNG files only)

[waplook @ <true, false>] // (WBMP files only)

[dpi @ <value 1..32767>] // (EPS, PDF, and PS files only)

[sourceProfile @ <"filename.icc">]

[destProfile @ <"filename.icc">]

[intent @ <"rendering intent">

[overrideEmbedded @ <true, false>]

);

Parameters

name, type, detect, transform, layers, fillalpha, screengamma, waplook, and dpi - these
parameters operate the same as for the load() function. For more information, see “load()” on
page 137.

Note: DPI is supported for non-bitmap (vector) file formats such as AI, EPS, PDF, PS and all
Office files in the LibreOffice environment. It has no effect on the loading of bitmap (raster)
images such as BMP, Targa, TIFF, GIF, and JPEG.

sourceProfile, destProfile, intent, and overrideEmbedded - used to determine how this
conversion is performed. If any of these parameters are not supplied, the current defaults (as
specified in the properties file) are used instead.

Note: If the destProfile parameter is specified, the resulting image will be in the colorspace
of the specified profile. If this profile does not have an RGB colorspace, the resulting image will
NOT be an RGB image.

Example

#include "Sys/media.ms"

var image = new Media();

image.loadAsRgb(name @ "myCmykImage.tif");

154

MediaRich CORE 6.2 • Programmer's Guide

makeCanvas()

The makeCanvas()method creates a “blank” Media object of the specified dimensions and fully
supports the CMYK colorspace.

Syntax

makeCanvas(

[Xs @ <width in pixels>]

[Ys @ <height in pixels>]

[Rtype @ <bit-depth>]

[FillColor @ <color in hexadecimal or rgb>]

[Transparency @ <true, false>]

Parameters

Xs and Ys - specify the width and height of the canvas in pixels. If Xs or Ys is not specified, a 1x1
canvas is created. If only one of Xs and Ys is specified, the unspecified parameter is assumed to be
the same as the specified one (a square canvas is created).

Rtype - specifies the bit-depth. Supported bit-depths are: RGB-24, RGBA-32, CMYK-32, CMYKA-40,
Gray-8, RGB-15, RGB-16, RGBA-16. The default bit-depth is RGBA-32 (RGB, 32-bit).

Note: The 16-bit type is 5-6-5, while the 16a-bit is 1-5-5-5 with the top bit as an alpha channel.

FillColor - determines the color value given to each pixel in the generated canvas. If FillColor is
not specified, each pixel is set to black.

Transparency - set to true, the canvas’ pixels are all set as transparent and FillColor is used as
both the foreground and background color. If Transparency is set to false, the canvas’ pixels are
set as solid. FillColor is used for the foreground color, and the background color is black. This is
set to false by default.

Example

var image = new Media();

var text = new Media();

image.makeCanvas(Xs @ 200, Ys @ 150, FillColor @ 0x0000ff);

text.makeText(text @ "hello world", font @ "Arial", style @ "Bold", size @ 24, smooth
@ true, color @ 0xffffff);

image.composite(source @ text);

image.save(type @ "jpeg");

155

CHAPTER 4 MediaScript Objects and Methods

makeText()

The makeText()method, instead of compositing text onto the target image, creates a new image
that includes just the text. The image produced is always 32-bit. This function fully supports the
CMYK colorspace.

Note: Using makeText()within a JavaScript for loop can result in initially poor anti-aliasing.
To maintain optimal anti-aliasing, place the text object outside the loop.

Syntax

makeText(

[Font @ <"font family", "virtualfilesystem:/font family">]

[Style @ <"modifier">]

[Text @ <"string">]

[Color @ <color in hexadecimal or rgb>]

[Rtype @ <bit-depth>]

[Size @ <value 1..4095>]

[Justify @ <"left", "center", "right", "justified">]

[Wrap @ <pixel-width>]

[Angle @ <angle>]

[Smooth @ <true, false>]

[SmoothFactor <0 .. 4>]

[BaseLine @ <true, false>]

[Kern @ <true, false>]

[Line @ <value 01. to 10>]

[DPI @ <resolution>]

[Fillcolor @ <color in hexadecimal or rgb>]

[ClearType @ <true, false>] //(win82ows only)

[FitText <true, false>]

);

156

MediaRich CORE 6.2 • Programmer's Guide

Parameters

Font - specifies the TrueType or PostScript font family to be used, for example, Arial. MediaRich
supports Type 1 (.pfa and .pfb) PostScript fonts only.

Note: The size of the font in pixels is dependent on the resolution of the resulting image. If the
resolution of the image is not set (zero), the function uses a default value of 72 dpi.

The default location for fonts specified in a MediaScript is the fonts file system which includes both
theMediaRich Shared/Originals/Fonts folder and the default system fonts folder. If a MediaScript
specifies an unavailable font, MediaRich generates an error.

Note: You can modify theMediaRich server local.properties file to change the default fonts
directory. Refer to theMediaRich Installation and Administration Guide for more
information.

Style - specifies the font style. You can use any combination ofmodifiers. Each modifier should be
separated by a space character.

Note: The Style parameter is not available ifMediaRich is running on Mac or Linux.

Weight modifiers modify the weight (thickness) of the font. Valid weight values, in order of increasing
thickness, are:

• thin

• extralight or ultralight
• light

• normal or regular
• medium

• semibold or demibold (semi or demi are also acceptable)
• bold

• extrabold or ultrabold (extra or ultra are also acceptable)
• heavy or black

Other Style parameters are Underline, Italic or Italics, and Strikethru or Strikeout.

Note: You can combine Style parameters as necessary. For example: Style @ “Bold
Italic”

Text - specifies the text to be drawn. The text string must be enclosed in quotes. To indicate a line
break, use \n.

Color - specifies the color to be used for the text. The default value for text color is white. For more
information about setting a foreground color, see “setColor()” on page 188.

157

CHAPTER 4 MediaScript Objects and Methods

Rtype - specifies the target bit depth. Supported bit-depths are: Gray-8, RGB-15, RGB-16, RGBA-
16, RGB-24, RGBA-32, CMYK-32, CMYKA-40. The 16-bit type is 5-6-5, while the 16a-bit is 1-5-5-5 with
the top bit as an alpha channel.

In addition, the following shortcuts will have default values when used as input parameters:

• Gray -> Gray-8
• RGB -> RGB-24
• RGBA -> RGBA-32
• CMYK -> CMYK-32
• CMYKA -> CMYKA-40

Note: Deprecated Rtype values include: Grayscale, pal-8, 15-bit, 16-bit, 16a-bit, 24-
bit, 32-bit.

Size - sets the point size of the font to be used, and its default value is 12 and themaximum is
4095.

Justify - specifies how the text will be justified. The default is center. Other options are left,
right-hand, and justified. (The justified option is available on Windows only.) This
parameter only affects text with multiple lines.

Wrap - if specified, its value forces a new line whenever the text gets longer than the specified
number of pixels (in this case correct word breaking is used).

Angle - allows the text to be rotated clockwise by the specified angle (in degrees).

Line - specifies the line spacing. The default spacing between lines of text is 1.5.

Smooth - specifies that the text is drawn with five-level anti-aliasing.

SmoothFactor - specifies the power of two for image scale-based smoothing. If 1 is specified, the
text will be drawn at twice the specified size and scaled down. If 2 is specified, the text is drawn at
four times the size. This scaling produces smoother text for renderers with poor anti-aliasing at
smaller text sizes. The Smooth parameter must be set to true for this parameter to have any effect.

Baseline - if specified, the text is treated as though it is always the height of the largest character.
This allows text to be aligned between different calls to the function. The distance, in pixels, between
the baselines of two lines of text is 1.5 times the point-size of the text. Thus for 30-point text the line
spacing is 45 pixels. If this parameter is not specified, makeTextmeasures the actual height of the
text and centers it accordingly.

Kern - if set to true, optimizes the spacing between text characters. By default this is set to true. If
you do not want to use kerning, this must be specified as false.

Note: PostScript fonts store the kerning information in a separate file with an .afm extension.
This file must be present in order for kerning to be applied to the text.

DPI - allows you to specify the image resolution in dots per inch (DPI).

158

MediaRich CORE 6.2 • Programmer's Guide

Note: The DPI parameter is not available ifMediaRich is running on Mac or Linux.

Fillcolor - specifies the color to be used for the background. The default value is black.

ClearType - if specified as true, theWindows ClearType text renderer will be used if available.

FitText - if specified as true, any empty space surrounding the generated text is removed.

Example

var image = new Media();

image.makeText(text @ "Your message goes here.",Font @ "Arial", Style @ "Bold", color
@ 0xffff00, smooth @ true);

image.save(type @ "jpeg");

measureText()

The measureText()Method returns an array of offsets where each character would be drawn for a
single line of text. If more that one line of text is specified (by including \n) then only the first line of
text is measured.

Important: This method is available for Windows only.

Syntax

measureText(

[text @ <"string">],

[font @ <"font family">],

[size @ <value 1..4095>],

[style@ <"modifier">],

[spacing @ <"spacing">],

[smooth @ <true, false>],

[ClearType @ <"cleartype">], //Windows only

[kern @ <true, false>]

);

Parameters

Font - specifies the TrueType or PostScript font family name to be used, for example, Arial.
MediaRich supports Type 1 (.pfa and .pfb) PostScript fonts only.

Note: The size of the font in pixels is dependent on the resolution of the resulting image. If the
resolution of the image is not set (zero), the function uses a default value of 72 DPI.

The default location for fonts specified in a MediaScript is the fonts file system which includes both
theMediaRich Shared/Originals/Fonts folder and the default system fonts folder. If a MediaScript
specifies an unavailable font, MediaRich generates an error.

159

CHAPTER 4 MediaScript Objects and Methods

Note: You can modify theMediaRich server local.properties file to change the default fonts
directory. Refer to theMediaRich Installation and Administration Guide for more
information.

Style - specifies the font style. You can use any combination ofmodifiers. Each modifier should be
separated by a space character.

Weight modifiers modify the weight (thickness) of the font. Valid weight values, in order of increasing
thickness, are:

• thin

• extralight or ultralight
• light

• normal or regular
• medium

• semibold or demibold (semi or demi are also acceptable)
• bold

• extrabold or ultrabold (extra or ultra are also acceptable)
• heavy or black

Other Style parameters are Underline, Italic or Italics, and Strikethru or Strikeout).

Note: You can combine Style parameters. For example: Style @ “Bold Italic”

Text - specifies the text to be drawn. The text string must be enclosed in quotes. To indicate a line
break, insert \n into the text.

Size - sets the point size of the font to be used. The default size is 12.

Spacing - adjusts the spacing between the text characters. The default is 0. A negative Spacing
value draws the text characters closer together.

Smooth - specifies that the text is drawn with five-level anti-aliasing.

ClearType - if specified as true, theWindows ClearType text renderer is used (if available).

Kern - if set to true, optimizes the spacing between text characters. By default this is set to true. If
you do not want to use kerning, this must be specified as false.

Note: PostScript fonts store the kerning information in a separate file with an .afm extension.
This file must be present in order for kerning to be applied to the text.

noiseAddNoise()

The noiseAddNoise()Method applies random pixels to an image to simulate a noise effect.

Note: This function is “selection aware”—if a selection is made, the system applies the function

160

MediaRich CORE 6.2 • Programmer's Guide

based on the current selection. For more information about making selections, see “selection()”
on page 186.

Syntax

image.noiseAddNoise(

[Amount @ <value 1..999>]

[Gaussian @ <true, false>]

[Grayscale @ <true, false>]

);

Parameters

Amount - indicates the intensity of the effect. The default is 32.

Gaussian - toggles the Gaussian distribution effect on or off. The default is false (off).

Grayscale - applies themonochromatic scale to the affected pixels. The default is false (normal
color).

Example

var image = new Media();

image.load(name @ "peppers.tga");

image.noiseAddNoise(Amount @ 15, Gaussian @ true, Grayscale @ true);

image.save(type @ "jpeg");

otherHighPass()

The otherHighPass()method applies an effect opposite that of blurGaussianBlur()—it
replaces each pixel with the difference between the original pixel and a Gaussian-blurred version.

Note: This function is “selection aware”—if a selection is made, the system applies the function
based on the current selection. For more information about making selections, see “selection()”
on page 186.

Syntax

otherHighPass(

161

CHAPTER 4 MediaScript Objects and Methods

[Radius @ <value, 10..250>]

);

Parameters

Radius - specifies the radius of the Gaussian blur aspect of the effect. The default is 10.

Example

var image = new Media();

image.load(name @ "peppers.tga");

image.otherHighPass(Radius @ 50);

image.save(type @ "jpeg");

otherMaximum()

The otherMaximum() method replaces the pixels within the radius with the brightest pixel in that
radius, thereby amplifying the lighter areas of the image.

Note: This function is “selection aware”—if a selection is made, the system applies the function
based on the current selection. For more information about making selections, see “selection()”
on page 186.

Syntax

otherMaximum(

[Radius @ <value 1..10>]

);

Parameters

Radius - determines the extent of the effect. The default is 1 (minimal effect).

Example

var image = new Media();

image.load(name @ "peppers.tga");

image.otherMaximum(Radius @ 2);

image.save(type @ "jpeg");

162

MediaRich CORE 6.2 • Programmer's Guide

otherMinimum()

The otherMinimum()method replaces the pixels within the radius with the darkest pixel in that
radius, thereby amplifying the darker areas of the image.

Note: This function is “selection aware”—if a selection is made, the system applies the function
based on the current selection. For more information about making selections, see “selection()”
on page 186.

Syntax

otherMinimum(

[Radius @ <value 1..10>]

);

Parameters

Radius - determines the extent of the effect. The default is 1 (minimal effect).

Example

var image = new Media();

image.load(name @ "peppers.tga");

image.otherMinimum(Radius @ 2);

image.save(type @ "jpeg");

163

CHAPTER 4 MediaScript Objects and Methods

pixellateFragment()

The pixellateFragment()method makes and offsets four copies of the image.

Note: This function is “selection aware”—if a selection is made, the system applies the function
based on the current selection. For more information about making selections, see “selection()”
on page 186.

Syntax

pixellateFragment(

[Radius @ <value 1..16>]

);

Parameters

Radius - determines the extent of the offset, with 1 indicating theminimum offset. The default is 4.

Example

var image = new Media();

image.load(name @ "peppers.tga");

image.pixellateFragment(Radius @ 2);

image.save(type @ "jpeg");

pixellateMosaic()

The pixellateMosaic()method pixellates the image, with pixel size determined by the Radius
parameter.

Note: This function is “selection aware”—if a selection is made, the system applies the function
based on the current selection. For more information about making selections, see “selection()”
on page 186.

Syntax

pixellateMosaic(

[Size <2..64>]

164

MediaRich CORE 6.2 • Programmer's Guide

);

Parameters

Size - determines the resulting pixel size. The default is 8.

Example

var image = new Media();

image.load(name @ "peppers.tga");

image.pixellateMosaic(Radius @ 10);

image.save(type @ "jpeg");

polygon()

The polygon()Method draws and positions a polygon on the image based on the specified
parameters. This method accepts all composite() parameters except HandleX and HandleY. For
information about these parameters, see “composite()” on page 91.

The foreground color may vary with this function, depending on the original Media object. If the
object has a set foreground color, or it is set with the setColor() function, MediaRich uses the set
color. If the object has no set foreground color, MediaRich does the following:

• For objects with 256 colors or less, MediaRich uses the last color index.
• For objects with 15-bit or greater resolution, MediaRich uses white.

Note: Using polygon() to mask frames within a JavaScript for loop can result in initially poor
anti-aliasing. To maintain optimal anti-aliasing, place themasking polygon outside the loop.

Syntax

polygon(

Points @ <"x,y;x,y;x,y;x,y">,

[Opacity @ <value 0..255>]

[Unlock @ <true, false>

[Color @ <color in hexadecimal, rgb, or cymk>]

[Index @ <value 0..16777215>]

[Saturation @ <value 0..255>]

[PreserveAlpha @ <true, false>]

165

CHAPTER 4 MediaScript Objects and Methods

[Blend @ <"type">]

[Width @ <value>]

[Smooth @ <true, false>]

[Fill @ <true, false>]

Parameters

Points - describes each point of the polygon, using absolute coordinate points. Each pair of
coordinates is separated from the next by a semicolon. This parameter is required and has no
defaults.

Note: To create a closed polygon, the first set of coordinates and the last set of coordinates
must be identical. For example, the parameter Points @

“16,20;180,160;120,229;16,20” describes a closed triangle.

Opacity - specifies opacity of the drawn object. The default value is 255 (completely solid).

Unlock - if set to true, causes the polygon to display only where the specified color value appears in
the current (background) image. The default is false.

Color - sets the color of the polygon. The default is the foreground color. This parameter supports a
hexidecimal, RGB, or CMYK color specification:

• hexidecimal - color value expressed as a value from 0x000000 to 0xFFFFFF (RGB colorspace) or from
0x00000000 to 0xFFFFFFFF (CMYK colorspace)

• RGB - color value expressed as a value from 0 to 16,777,215
• CMYK - color value expressed as a value from 0 to 4,294,967,295

Colorspace

Always pass a color value appropriate to the colorspace. You can ensure this using the
getPixelFormat() function in your script and then using different hexadecimal values for the RGB
and the CMYK colorspaces in an IF/THEN construction. If getPixelFormat() returns "CMYK," use
the CMYK value (0x plus eight more digits), and otherwise use the RGB value (0x plus six more
digits).

Index - colorizes the polygon using the available color palette for the source image (as an alternative
to the Color parameter).

Note: You cannot specify values for both the Color and Index parameters.

Saturation - specifies the value used for weighting for the change in saturation for destination
pixels. A value of 255 changes the saturation of pixels to the specified color. A value of 128 changes
the saturation of a pixel to a mid-value between the pixel’s current color and the specified color.

Note: The Saturation parameter only functions when the Blend parameter is set to
colorize.

166

MediaRich CORE 6.2 • Programmer's Guide

PreserveAlpha - if set to true, preserves the alpha channel of the target image as the alpha
channel of the resulting image. The default is false.

Blend - specifies the type of blending used to combine the drawn object with the images. Blend
options are: Normal, Darken, Lighten, Hue, Saturation, Color, Luminosity, Multiply,
Screen, Dissolve, Overlay, HardLight, SoftLight, Difference, Exclusion, Dodge,
ColorBurn, Under, Colorize (causes only the hue component of the source to be stamped down
on the image), and Prenormal.

Note: The Burn option is deprecated. ColorBurn results in the same blend.

Width - specifies the thickness (in pixels) of the line that describes the polygon. The default is 1.

Note: If the Fill parameter is set to true, Width is ignored.

Smooth - if set to true, makes the edges of the polygon smooth, preventing a pixellated effect. The
default is false.

Important: If you are using smoothing for media that contains an alpha channel and you plan
to save it to a format that does not support alpha channels, it is necessary to use convert() to
remove the alpha channel before using this operation. Or, as an alternative, you can composite
themodified image onto an opaque background before saving the image. Without this
additional handling, themedia will not look correct in a non-alpha file format.

Fill - if set to true, fills in the polygon with the color specified by the Color or Index parameter.
The default is false.

Example

var image = new Media();

image.load(name @ "logobg.tga");

image.polygon(points @ "200,20;350,222;50,222;200,20", width @ 3);

image.save(type @ "jpeg");

167

CHAPTER 4 MediaScript Objects and Methods

quadWarp()

The quadWarp()method moves the corners of the source image to the specified locations, warping
the image accordingly. The top left corner of the source image is represented by the coordinates 0,0.

Note: This is a linear transformation, so while it can be used to “fake” small 3D rotations, for
greater angles, the lack of perspective will become apparent.

This function fully supports the CMYK colorspace.

Syntax

quadWarp(

[Smooth @ <true, false>]

[TopLeftX @ <position>]

[TopLeftY @ <position>]

[BotLeftX @ <position>]

[BotLeftY @ <position>]

[BotRightX @ <position>]

[BotRightY @ <position>]

[TopRightX @ <position>]

[TopRightY @ <position>]

[layers @ <"layer list">] // (PSD files only)

);

Parameters

Smooth - provides for smooth edges when warping the image using non-right angles.

TopLeftX and TopLeftY - represent the upper left corner of the area to be warped. The default is
the original image’s upper left corner.

TopRightX and TopRightY - represent the upper right corner of the area to be warped. The default
is the original image’s upper right corner.

BotLeftX and BotLeftY - represent the lower left corner of the area to be warped. The default is
the original image’s lower left corner.

BotRightX and BotRightY - represent the lower right corner of the area to be warped. The default
is the original image’s lower right corner.

layers - for PSD files, specifies the layers to be affected. The layer numbers begin at 0 (background)
and go up. For more information see “load()” on page 137.

Example

var image = new Media();

image.load(name @ "peppers.tga");

image.quadWarp(TopLeftX @ -10, TopLeftY @ -20, TopRightX @ 440, TopRightY @ 480,
BotLeftX @ -40, BotLeftY @ 780, BotRightX @ 640, BotRightY @ 0, smooth @ true);

168

MediaRich CORE 6.2 • Programmer's Guide

image.save(type @ "jpeg");

rectangle()

The rectangle()method draws and positions a rectangle on the image based on the specified
parameters. This method accepts all composite() parameters except HandleX and HandleY. For
information about these parameters, see “composite()” on page 91.

The foreground color may vary with this function, depending on the original Media object. If the
object has a set foreground color, or it is set with the setColor() function, MediaRich uses the set
color. If the object has no set foreground color, MediaRich does the following:

• For objects with 256 colors or less, MediaRich uses the last color index.
• For objects with 15-bit or greater resolution, MediaRich uses white.

Note: Using rectangle() to mask frames within a JavaScript for loop can result in initially
poor anti-aliasing. To maintain optimal anti-aliasing, place themasking rectangle outside the
loop.

Syntax

rectangle(

X @ <pixel>,

Y @ <pixel>,

Xs @ <pixel>,

Ys @ <pixel>,

[Opacity @ <value 0..255>]

[Unlock @ <true, false>]

[Color @ <color in hexadecimal, rgb, or cymk>]

[Index @ <value 0..16777215>]

[Saturation @ <value 0..255>]

[PreserveAlpha @ <true, false>]

[Blend @ <"blend-type">]

[Width @ <value>]

[Angle @ <value -360..360>]

[Smooth @ <true, false>]

[Fill @ <true, false>]

169

CHAPTER 4 MediaScript Objects and Methods

);

Parameters

X - indicates (in pixels) the x-axis coordinate of the upper left corner of the rectangle. This parameter
is required and has no default value.

Y - indicates (in pixels) the y-axis coordinate of the upper left corner of the rectangle. This parameter
is required and has no default value.

Xs - indicates (in pixels) the x-axis coordinate of the lower right corner of the rectangle, relative to the
upper left corner. This parameter is required and has no default value.

Ys - indicates (in pixels) the y-axis coordinate of the lower right corner of the rectangle, relative to the
upper left corner. This parameter is required and has no default value.

Opacity - specifies opacity of the drawn object. The default value is 255 (completely solid).

Unlock - if set to true, causes the rectangle to display only where the specified color value appears
in the current (background) image. The default is false.

Color - sets the color of the rectangle. The default is the foreground color. This parameter supports
a hexidecimal, RGB, or CMYK color specification:

• hexidecimal - color value expressed as a value from 0x000000 to 0xFFFFFF (RGB colorspace) or from
0x00000000 to 0xFFFFFFFF (CMYK colorspace)

• RGB - color value expressed as a value from 0 to 16,777,215
• CMYK - color value expressed as a value from 0 to 4,294,967,295

Colorspace

Always pass a color value appropriate to the colorspace. You can ensure this using the
getPixelFormat() function in your script and then using different hexadecimal values for the RGB
and the CMYK colorspaces in an IF/THEN construction. If getPixelFormat() returns "CMYK," use
the CMYK value (0x plus eight more digits), and otherwise use the RGB value (0x plus six more
digits).

Index - colorizes the line using the available color palette from the source image (as an alternative to
the Color parameter).

Note: You cannot specify values for both the Color and Index parameters.

Saturation - specifies a value used for weighting for the change in saturation for destination pixels.
A value of 255 changes the saturation of pixels to the specified color. A value of 128 changes the
saturation of a pixel to a mid-value between the pixel’s current color and the specified color.

Note: The Saturation parameter only functions when the Blend parameter is set to
colorize.

170

MediaRich CORE 6.2 • Programmer's Guide

PreserveAlpha - if set to true, preserves the alpha channel of the target image as the alpha
channel of the resulting image. The default is false.

Blend - specifies the type of blending used to combine the drawn object with the images. Blend
options are: Normal, Darken, Lighten, Hue, Saturation, Color, Luminosity, Multiply,
Screen, Dissolve, Overlay, HardLight, SoftLight, Difference, Exclusion, Dodge,
ColorBurn, Under, Colorize (causes only the hue component of the source to be stamped down
on the image), and Prenormal.

Note: The Burn option is deprecated. ColorBurn results in the same blend.

Width - specifies the thickness (in pixels) of the line that describes the rectangle. The default is 1.

Note: If the Fill parameter is set to true, Width is ignored.

Smooth - if set to true, makes the edges of the rectangle smooth, preventing a pixellated effect. The
default is false.

Important: If you are using smoothing for media that contains an alpha channel and you plan
to save it to a format that does not support alpha channels, it is necessary to use convert() to
remove the alpha channel before using this operation. Or, as an alternative, you can composite
themodified image onto an opaque background before saving the image. Without this
additional handling, themedia will not look correct in a non-alpha file format.

Fill - fills in the rectangle with the color specified by the Color or Index parameter. The default is
false.

Example

var image = new Media();

image.load(name @ "family2.jpg");

image.rectangle(x @ 45, y @ 55, xs @ 283, ys @ 157, width @ 3);

image.save(type @ "jpeg");

reduce()

The reduce()method applies a specified or generated color palette to the image. By default, this
function generates an optimal palette of 256 colors. It accepts a boolean parameter, UseAlpha. It
defaults to false to maintain compatibility with the old behavior. If set to true, alpha channel values
below the cutoff will cause the pixels in the paletted image to be transparent.

Also an additional integer parameter, AlphaCutoff, can be specified. It defaults to 127. Valid values
range from 0 to 255. It controls the decision as to whether to make a pixel transparent or opaque in
the resulting paletted image.

If the sourceMedia object does not have an alpha channel, the UseAlpha and AlphaCutoff
parameters will be ignored.

171

CHAPTER 4 MediaScript Objects and Methods

Note: MediaRich also supports Adobe Color Table (.act) files.

Syntax

reduce(

[Netscape @ <true, false>]

[BW @ <true, false>]

[Pad @ <true, false>]

[PreserveBackground @ <true, false>]

[NoWarp @ <true, false>]

[Name @ <"Palettes/filename.pal", "virtualfilesystem:/filename.pal">]

[Colors @ <1 to 256>]

[Dither @ <value 0..10>]

[DitherTop @ <value 0..10>]

[UseAlpha @ <true, false>]

[AlphaCutoff @ <0 to 255>]

[layers @ <"layer list">] // (PSD files only)

);

Parameters

Netscape - if set to true, applies the Netscape default palette as an alternative to applying the
default custom palette.

BW - if set to true, applies the two-color, black and white palette.

Pad - ensures that the palette always contains the required number of colors. In a situation where
there are fewer unique colors in the image than required for the palette, the extra colors are padded
with black. If pad is not specified, the palette will shrink down to the number of unique colors
available.

PreserveBackground - when dithering is used, eliminates any pixels in the source image that
match the background color from the dithering process in the destination image. This can be used to
eliminate fuzzy edges for an object against a solid color background.

Nowarp - if set to true, turns off the normal colorspace warping that occurs when searching for a
closest color to take into account the bias in the human eye. This is useful when reducing an image to
an existing palette with a small number of colors, such as theWindows 16-color palette.

Name - specifies a palette file as the palette to be applied to the image. The following color palette files
are installed on MediaRich:

• 128_Grays.pal

• 16_Grays.pal

• 256_Grays.pal

• 32_Grays.pal

• 4_Grays.pal

172

MediaRich CORE 6.2 • Programmer's Guide

• 64_Grays.pal

• 8_Grays.pal

• Macintosh_16.pal

• Macintosh_256.pal

• Netscape.pal

• Windows_16.pal

• Windows_256.pal

The default location for palette files is the following:
MediaRichCore/Shared/Originals/Media/Palettes

You can store additional palette files in this directory and use the Name parameter to specify the
palette to be applied to the image.

Note: You can modify theMediaRich server’s local.properties file to change the default
Media/Palettes directory. Refer to theMediaRich CORE Installation and Administration
Guide for more information.

MediaRich also allows you to set up virtual file systems and then use the Name parameter to load
palettes from a virtual file system. Virtual file systems are defined in theMediaRich server’s
local.properties file. For example, if you define MyPalettes: to represent the path
C:/PALS/MyPalettes/ in the local.properties file, you can use files from theMyPalettes directory with
the reduce() function :

image.reduce(name @ "MyPalettes:/custom.pal");

Note: You might need to experiment with dithering and dithertop levels to achieve the results
you want in the palette you use. For example, palettes with a bit-depth between 128 and 256
seem to appear best with a Dither value of 8 and a Dithertop value of 6.

image.reduce(Name @ "Palettes/Windows_256.pal");

Colors - specifies the number of palette colors to be generated and applied. In the case of a Media
with multiple frames, all the frames are reduced to one palette based on the contents of all the
frames.

Note: The Notbackcolor parameter is deprecated.

Dither - determines the level of dithering to use for remapping image pixels to the palette. The
default is 0, which is no dithering. While the dither value ranges from 0 to 10, the actual effects of
different values vary according to the number of colors in the palette and their spread relative to
each other.

Dithertop - if set to truewhen dithering is used, sets an upper threshold of how far the dithering
algorithm will go to pick a color in order to correct color balance. The default value is 10. When an
optimal (custom) palette is used, lowering the value of dithertop tends to reduce the pixelization of
the image, making the dithering effect softer.

173

CHAPTER 4 MediaScript Objects and Methods

UseAlpha - if set to true, alpha channel values below the cutoff will cause the pixels in the paletted
image to be transparent. It defaults to false to maintain compatibility with the old behavior.

AlphaCutoff - when UseAlpha is true, this can be specified to control the decision as to whether
to make a pixel transparent or opaque in the resulting paletted image. Valid values are 0 to 255, with
a default of 127.

If the sourceMedia object does not have an alpha channel, the UseAlpha and AlphaCutoff
parameters will be ignored.

Note: The FixAlpha parameter for the composite()method is now depreciated and is
ignored. The fixAlpha()method is also depreciated.

layers - for PSD files, specifies the layers to be affected. The layer numbers begin at 0 (background)
and go up. For more information see “load()” on page 137.

Example

var image = new Media();

image.load(name @ "car.tga");

image.reduce(colors @ 256, dither @ 3, pad @ true);

image.save(type @ "jpeg");

rotate()

The rotate()Method rotates theMedia by the specified angle in degrees. This function fully
supports the CMYK colorspace.

Syntax

rotate(

Angle @ <value 0 to infinity>

[ResizeCanvas @ <true, false>]

[Smooth @ <true, false>]

[Xs @ <pixels>]

[Ys @ <pixels>]

[layers @ <"layer list">] // (PSD files only)

);

174

MediaRich CORE 6.2 • Programmer's Guide

Parameters

Angle - specifies the number of degrees the image will be rotated. Positive numbers rotate clockwise
and negative numbers rotate counter-clockwise.

ResizeCanvas - provides for the canvas of the image to be automatically enlarged in order to
encompass the rotated image. The additional area uses the image’s background color. For more
information about setting an image’s background color, see setColor(). Defaults to “true” for
angles of 90 and 270, and to “false” otherwise.

Note: The Enlarge parameter is deprecated.

Smooth - provides for smooth edges when rotating to something other than right angles.

Xs and Ys - specify how the image will be cropped after it is rotated.

layers - for PSD files, specifies the layers to be affected. The layer numbers begin at 0 (background)
and go up. For more information see “load()” on page 137.

Example

var image = new Media();

image.load(name @ "pasta.tga");

image.rotate(angle @ 45, smooth @ true);

image.save(type @ "jpeg");

rotate3d()

The rotate3d()method rotates the image in 3D along either the x-axis or y-axis. A positive angle
rotates away from the viewer about the top or left edge, a negative angle rotates away from the
viewer about the bottom or right edge.

This function fully supports Media objects within the CMYK colorspace.

Syntax

rotate3d(

[alg @ <"Fast, Smooth, Best">]

[anglex @ <angle ±89>]

[angley @ <angle ±89>]

175

CHAPTER 4 MediaScript Objects and Methods

[distance @ <value>]

[layers @ <"layer list">] // (PSD files only)

);

Parameters

alg - specifies the algorithm that will be used. The default algorithm is fast. The effect of the best
algorithm is most apparent when scaling upward — it uses a spline algorithm, giving superior results,
but is slower than both the fast and smooth algorithms.

anglex - specifies the number of degrees the image will be rotated around the x-axis. A positive
angle rotates away from the viewer about the top or left edge. A negative angle rotates away from
the viewer about the bottom or right edge.

angley - specifies the number of degrees the image will be rotated around the y-axis. A positive
angle rotates away from the viewer about the top or left edge. A negative angle rotates away from
the viewer about the bottom or right edge.

Note: You can specify a value for only one of the Anglex or Angley parameters, and only
values between -89 and +89 are permitted.)

distance - gives the distance in pixels the viewer is away from the image. The default value is twice
the longest dimension of the image (which gives a nice look). If a more extreme perspective is
required, use a smaller value for distance. If a less extreme perspective is required, use a larger value.

Note: The value of distancemust be greater than zero.

layers - for PSD files, specifies the layers to be affected. The layer numbers begin at 0 (background)
and go up. For more information see “load()” on page 137.

Example

var image = new Media();

image.load(name @ "pasta.tga");

image.rotate3d(angley @ 30, distance @ 28);

image.save(type @ "jpeg");

176

MediaRich CORE 6.2 • Programmer's Guide

save()

The save()method saves a Media object to the specified file. You can save theMedia object as a
BMP, EPS, GIF, JPEG, PCX, PDF, PICT, PNG, PPM, PSD, SWF, TIFF, TGA, or WBMP. The TIFF (.tif) file
format supports file sizes greater than 4GB if the "Big" parameter is enabled.

Important: Loading, modifying, and saving very large image files can result in errors or crashes
when the system cannot accommodate these files. If this occurs, you should first try adding
morememory to your server. For more information, see “Memory Issues with Very Large
Image Files” on page 362.

Also, when working with large images, ensure your page file size is set to "System Managed
Size" on the enabled drive and make sure the drive has enough space to contain it.

Syntax

save(

[name @ "virtualfilesystem:/filename"]

[type @ <"typename">]

[embedICCProfile @ <true, false>] // (EPS, JPEG, PNG, PSD, and TIFF files only)

[SaveMetadata <true, false>]

[interlaced @ <true, false>] // (GIF and PNG files only)

[loopcount @ <value>] // (GIF files only)

[removeduplicates @ <true, false>] // (GIF files only)

[delay @ <value>] // (GIF files only)

[disposalmethod @ <"mode">] // (GIF files only)

[quality @ <value 1..100>] // (JPEG files only)

[progressive @ <true, false>] // (JPEG files only)

[baseline @ <true, false>] // (JPEG files only)

[colorspace @ <"type">] // (JPEG files only)

[highdetail @ <true, false>] // (JPEG files only)

[dontoptimize @ <true, false>] // (JPEG files only)

[compressionlevel @ <value 0..9>] // (PNG files only)

[endian @ <"byte order">] // (TIFF files only)

177

CHAPTER 4 MediaScript Objects and Methods

[compression @ <"rle", "faxg3", "faxg4", "jpeg", "lzw", "packbits", "zip",
"deflate">] // (TIFF files only)

[mode @ <"multi-resolution type”>] // (TIFF files only)

[Resolutions @ <"multi-resolution type”>] // (TIFF files only)

[TileWidth @ @ <value>] // (tiled TIFF files only)

[TileHeight @ @ <value>] // (tiled TIFF files only)

[Big @ <"On"><"Off"><"Auto">] // Big TIFF mode

[ScaleAlg @ <"Fast", "Smooth", "Outline", "Best", “OS”>] // (tiled TIFF files only)

);

Parameters

name - specifies the virtual filesystem and name for the file.

type - specifies the file type of the saved image; otherwise, the type is derived from the extension of
the file name. Valid type names are: bmp, eps, gif, jpeg, pcx, pict, png, ppm, psd, swf, tiff, targa, and
wbmp.

Saving an image as an SWF file creates a single-frame animation that can then be imported into a
Flash movie.

Note: The following formats support saving in the CMYK colorspace: .eps, .psd, .tif, and .jpg.

embedICCProfile - if set to true, indicates that any destination profile associated with the image
be embedded if the file format supports this.

Note: The save()method supports ICC profiles for EPS, JPEG, PNG, PSD, and TIFF files.
However, color correction for save() is now deprecated. The ColorCorrect()method is
required for converting from RGB to CMYK (or visa versa). Parameters for Color Profile
Specifications (srcProfile, destProfile, and intent) are no longer supported by save()
method.

SaveMetadata - if specified as true, any metadata associated with the image will be embedded in
the image. If the target file format does not support metadata, this parameter has no effect. For
more information about MediaRich’s metadata support, see CHAPTER 10 , “MediaRich Metadata
Support” on page 326.

Additional Parameters for GIF Files

Loopcount - sets the number of times the frames plays after loading. The default is 0 (infinite
looping).

Removeduplicates - if set to true, causes the GIF writer to remove duplicate frames and combine
their delay times into a single frame. The default is false.

Delay - sets the delay time (in hundredths of a second) for all frames in the GIF, overriding any
values that are stored in each frame.

178

MediaRich CORE 6.2 • Programmer's Guide

DisposalMethod - indicates themode of compression used when saving the GIF. The possible
modes are:

• Auto - this is the default behavior if no option is specified. It determines the best compression
using all of the GIF specification features.

• Compatible - this mode sets compatibility for Netscape and Opera browsers. The GIF writer still
automatically calculates delta rectangles for each frame and does transparent color compression,
but replaces any “restore-to-previous” instructions in the GIF with “restore with background.”

Note: The Compatible modemay result in a less efficient GIF, depending on how the pixels
are laid out in each frame. There will be no difference if the GIF is not animated and has no
transparent areas that are visible down to the browser’s background.

• ManualUnspecified - this mode disables any compression to allow compatibility with any
applications that do properly follow the GIF specification.

• ManualLeave - this mode prevents the disposal of the preceding framewhen displaying the
current frame.

• ManualUseBG - this mode replaces the preceding framewith the background color - usually
transparent - when displaying the current frame.

• ManualUsePrev - this mode restores the preceding frame before displaying the next frame.

Note: If the original image has more than 256 colors, you must apply the reduce() function
before the save() function.

Additional Parameter for GIF and PNG Files

Interlaced - if set to true, turns graphic interlacing on. The default is false.

Additional Parameters for JPEG Files

Quality - sets the level of quality on a scale from 0 to 100. The default is 85.

Progressive - if set to true, allows browsers to load the image in stages. The default is false.

Baseline - if set to true, saves the JPEG using the optimized baseline format. The default is false,
or the standard baseline format.

Colorspace - specifies the colorspace format in which the JPEG is saved. The default is Std. Other
valid colorspace format options are:

• Gray

• RGB

• YUV

• CMYK

• YCCK (usually compresses better when saving CMYK data)

Highdetail - if set to true, improves overall image quality. The default is false, unless the
Quality parameter is set to 100, in which case it is automatically enabled.

179

CHAPTER 4 MediaScript Objects and Methods

Note: This option yields better results with drawings than photographs.

Dontoptimize - disables the optimize feature of the JPEGwriter. The default is false.

Additional Parameters for JPEG 2000 Files

Lossless @ <true | false> (default is true)

Turns lossless compression on or off. If it’s on (true), the Quality setting has no effect, since lossless
compression always implies 100% quality.
Quality @ <1..100> (default 100)

Sets the quality level of the output image. This value is a percentage of the original uncompressed
image size you wish to compress the image by. So to make the output file 3% the size of the
uncompressed image, you would specify quality @ 3.
Unwrapped @ <true | false> (default is false)

Saves JPEG2000 image in the code-stream format instead of themore powerful .JP2 format.
TargetSize @ <number in Kbytes>

This lets you specify the size you wish the output file to be (in KBytes) and the writer will generate a
file of that size, adjusting the quality as needed. If it is unable to do it, the writer will return an error.
(An error is unlikely to happen except in themost extreme cases; e.g. trying to compress a 300MB file
down to 1K, etc.) This option overrides the Quality setting and thus has no default value. (If it's not
present, Quality @ 50 gets used.)
Progressive @ <true|false>, default is false

Causes a progressive image to be created using the LRCP JPEG 2000 progression. The number of
progressions depends on the final quality setting: themaximum levels generated is 10. It generates
levels until it reached 38% of the final quality, or 10 levels, whichever comes first. If you need more
control over progressive output (more levels, specific qualities, different progression type, etc.) use
the "ilyrrates" and other advanced options. See the Jasper docs for details.

Note: It is acceptable to use TargetSize and Progressive together. You do not have to use
Quality if you need to the file to be a specific size and also progressive.

AdvancedOptions @ <"options string>"

Specify additional options directly to the JasPer encoders. These options are added after the options
above, so any options that set or change the behavior of the above options will override their
settings. For more information on the settings the JasPer encoder takes, please consult the Jasper
encoder documentation. (Quick ref: ilyrrates is used for progressive saves, which determines the
compression ratio for each progression. prg sets the type of progression).

Additional Parameter for PNG Files

Compressionlevel - sets compression level. The default is 6. (A Compressionlevel value of 9
can be very slow in processing.)

180

MediaRich CORE 6.2 • Programmer's Guide

Additional Parameters for EPS Files

binary – if set to false, writes an ASCII EPS file. If not specified, it defaults to true and writes a
binary EPS file.

preview – if set to false, writes an EPS file without a TIFF preview. If not specified, it defaults to
true and writes a preview TIFF to the file.

debabCompat – if set to false, writes a smaller file that is not compatible with DeBabelizer. If not
specified, it defaults to true and writes a larger, but DeBabelizer-compatible file.

previewAtEnd – if set to true, writes the TIFF preview at the end of the file. If not specified, it
defaults to false and writes the TIFF preview at the beginning of the file.

Additional Parameter for PDF Files

The PDF Writer saves the images in theMedia object as rendered bitmaps embedded in a PDF file.

JPEGCompression (boolean, defaults to false)When true, the images in the PDF are saved as JPEG
instead of PNG. When saving as JPEG, the JPEGwriter options can also be applied. (See 'Additional
Parameters for JPEG Files' for details on the available JPEGwriter options.) Because of this, you can
control the size of the file by adjusting the compression quality.

When saving as PNG (JPEGCompression is false or not specified), the PNGwriter options can be
applied (see “Additional Parameter for PNG Files” on page 180 for details).

Note: The PDF writer compresses the entire document, so the PNG compression option (when
embedding a OPNG image)might not affect the file size.

When saving an RGBA-32 image (a 24-bit RGB image with an alpha channel) or an RGBA-16 image (a
15-bit RGB image with a 1-bit alpha channel) as a PDF using the default PNG compression, the image
will be applied to a white background, or to the background color set in theMedia object, if present.
(In other words, it uses any alpha channel to apply the image to the blank page, which is white as per
the PDF specification.)

If you do not require this effect, have your MediaScript remove the alpha channel data. The easiest
way is to specify an RType of RGB-24 as a parameter during the save() itself.

If you would prefer the background color to be other than white when saving RGBA-32 data to PDF
with PNG compression, precede the save with a call to setColor() that sets 'backcolor' to the
desired color.

Important: Only RGB data with an alpha channel will be treated this way: this is not the case for
CMYK+Alpha because all CMYK images are automatically switched to JPEG to maintain the
CMYK colorspace, which is not supported for PNG compression, but IS supported for JPEG
compression.

181

CHAPTER 4 MediaScript Objects and Methods

Additional Parameters for TIFF Files

endian - indicates the byte order. Values of big, mac, motorola, and sparc save the data in big-
endian byte order. little, pc, intel, and x86 save the data in little-endian byte order.

Compression - indicates the compression scheme to use. Valid values are:

• none - If no compression parameter is specified, the writer picks the best, most compatible
compression format. For color & grayscale images, this is "lzw". For 2-color B&W images, this is
"rle". If the file being written is multiframe, specifying a compression parameter forces ALL
frames to that compression mode. If themultiframe TIFF has both B&W and RGB images in the
media, an error will occur. User should let the writer automatically select compression in such
cases by not specifying the compression parameter.

• rle - Compresses runs of identical byte sequence values into code only a few bytes in length
• faxg3 - Produces TIFF files that conform to the Group 3 FAX format
• faxg4 - Produces TIFF files that conform to the Group 4 FAX format
• jpeg - Produces TIFF files using the JPEG compression scheme

Note: When the JPEG compression scheme is specified, a CompressionQuality parameter
can optionally be supplied in the save() function. CompressionQuality sets the level of
quality on a scale from 0 to 100. This parameter controls the quality vs. compression ratio -
high values produce large files with better quality and lower values produce smaller files with
poorer quality.

• lzw - Produces a lossless, dictionary-based compression, which results in fair compression ratios.
(For most images, it produces a compression ratio of about 2:1.)

• packbits - Uses a Run-Length Encoded (“RLE”) compression.
• zip - Applies a standard "zip" compression.
• deflate - Similar to zip, it applies a standard "zip" compression. However, it also stores an

older tag ID in the file. This is useful for old systems that cannot use themodern "zip"
compression tag.

Resolutions - Enables tiled TIFF mode and allows saving of subimages as a pyramid TIFF. By
default, the value of this parameter is “-1”, which disables tiled mode. When set to “0”, the writer
automatically calculates the number of resolutions to save as a pyramid TIFF file, until the subimage
becomes smaller than the tile dimensions. When set to “1”, it saves a single-resolution tiled TIFF.
When set to “2” or greater, this limits the number of resolutions to be saved or stops when the
subimage becomes smaller than the tile dimensions.

TileWidth, TileHeight - These are ignored when Resolutions is not specified or is specified as
a negative value. Use these parameters to specify the tile width and height (in pixels) for a tiled or
pyramid TIFF.

ScaleAlg - This is ignored when Resolutions is not specified or is specified as a negative value.
Use this parameter to specify the Media.scale()method to use to create the subimages for a
pyramid TIFF. The default scale mode is "smooth". For more information about the valid values, see
the description for the Alg parameter for “scale()” on page 183.

182

MediaRich CORE 6.2 • Programmer's Guide

Big - Enables/Disables BigTIFF mode. BigTIFF is a new TIFF standard that allows for TIFF files to grow
beyond 4GB in size. This parameter accepts three values:

• "On" - Forces BigTIFF mode to always be on; even files greater than 4GB will be saved in BigTIFF
format.

• "Off" - (default) Forces BigTIFF mode to off. If a file grows larger than 4GB while it is being saved,
an error will be reported and the save will abort.

• "Auto" - The file is first saved in normal TIFF format and if it cannot be saved that way, it will
automatically switch to BigTIFF mode and the save will be restarted.

Save () Example

var image = new Media();

image.load(name @ "peppers.tif");

image.save(type @ "gif", interlaced @ true, loopcount @ 100,

removeduplicates @ true, delay @ 400);

saveEmbeddedProfile()

The saveEmbeddedProfile()method saves the profile embedded in an image to the specified
disk file.

Syntax

saveEmbeddedProfile(

name @ <"filename.icc">

);

Parameters

name - specifies the name of the file where the profile is to be stored. The string must be in quotes. If
the string does not specify a file system the default is the color file system. See “File Systems” on
page 39 for more information.

scale()

The scale()method scales the image to the specified size. This function fully supports the CMYK
colorspace.

Syntax

scale(

[Alg @ <"Fast", "Smooth", "Outline", "Best", “OS”>]

[Constrain @ <true, false>]

[Xs @ <pixels>, <percentage + "%">]

[Ys @ <pixels>, <percentage + "%">]

[X1 @ <pixels>]

[Y1 @ <pixels>]

[X2 @ <pixels>]

183

CHAPTER 4 MediaScript Objects and Methods

[Y2 @ <pixels>]

[PreserveBackground @ <true, false>]

[PreserveBackgroundCutoff @ <value 0..100>]

[PadColor @ <color in hexadecimal or rgb>]

[PadIndex @ <value 0..16777215>]

[Transparency @ <value 0..255>]

[TransparentCutoff <-1, 0..255>]

);

Parameters

Alg - Specifies the algorithm that will be used for scaling. This parameter supports five different
algorithm modes:

• Fast - This is the default algorithm.
• Smooth - This is similar to the Fast algorithm, but produces a smoother result for scaling upward.
• Outline - This algorithm is designed for black and white images only.
• Best - The effect of this algorithm is most apparent when scaling upward -- it uses a spline

algorithm, giving superior results; however, it is slower than both the Fast and Smooth
algorithms.

• OS - This mode uses the operating system scaling to provide a fast, high-quality scale. It only
works on RGB and RGBAMedia rasters. Any other raster type will cause it to quietly use the Best
mode instead. It will also fall back to Best if the image uses more that 512MB ofmemory, due to
an OS limitation.

Note: On Windows, the OS scaling mode sets the color of the pixels in RGBA images to black
anywhere that the alpha for that pixel is completely transparent. This is different than the
existing scale modes, where the color channels are left untouched. If this is not appropriate
for your application of the scaled images, use the Smooth or Best scaling modes for RGBA
rasters instead.

Constrain - Specifies that the ratio between xs and ys is maintained relative to the original image. If
Xs and Ys values are specified and constrain is set to true, the image size will be padded to preserve
the aspect ratio of the source. If the padColor parameter is not set, then the pad color is
determined by the backcolor.

Xs and Ys - Specify the size of the generated image, either as an absolute (in pixels), or as a
percentage of the selection in the original. Use X1, Y1, X2, and Y2 to specify the selected area. If no
area is selected, the percentage is based on the original image size.

Note: Putting a percentage sign after the number signifies a percentage. Where either Xs or Ys
is not specified, the original dimension is assumed.

X1 and Y1 - Represent the upper left corner of the area to be scaled. The default is the original
image’s upper left corner.

184

MediaRich CORE 6.2 • Programmer's Guide

X2 and Y2 - Represent the lower right corner of the area to be scaled. The default is the original
image’s lower right corner.

PreserveBackground -When scaling an image that contains an object surrounded by a solid
background color, setting this parameter to true avoids anti-aliasing the edge of the object with the
background. Anti-aliasing is a method of eliminating jagged edges by blending pixel colors with the
background. When working with an object on a solid background, however, most users find it
preferable to maintain a sharp, clean edge, because the blending can often produce an undesired
halo effect.

PreserveBackgroundCutoff - Specifies the threshold for PreserveBackground. The default
threshold percentage is 67, which means that the background color will be preserved unless 67% or
more of the pixels use the background color.

Padcolor or Padindex - Specifies the color to be used where the new image dimensions extend
beyond the current image. If a pad color is not specified, the image’s background color is used by
default. For more information about setting an image’s background color, see “setColor()” on
page 188.

Transparency - Specifies the transparency (255 is opaque and 0 is transparent) of the padded
area’s alpha channel. This parameter is useful when the cropped image is used in a composite()
(see page 91).

Note: If the cropped image is not 32-bit before cropping, the transparency information is not
used on the next composite() function.

TransparentCutoff - Specifies a value that controls the selection of the transparent pixel when
scaling images with color palette. If the scaled alpha channel value is less than or equal to the
transparentCutoff value, the transparent pixel is selected. A value of -1 (default) ignores the
scaled alpha value and performs the normal reverse color lookup.

Example

var image = new Media();

image.load(name @ "pasta.tga");

image.scale(xs @ "75%", constrain @ true);

image.save(type @ "jpeg");

185

CHAPTER 4 MediaScript Objects and Methods

selection()

The selection()method creates a selection from the specified Media object.

The selected area can be thought of as a grayscale image or alpha channel that determines the way in
which a given transform is applied to an image. Where the selection is 255, the transform or function
is applied to the image pixel; where the selection is 0, the transform is not applied. In cases where the
selection is between 1 and 254, the transform is applied to the source pixel, and the result is then
blended with the original pixel based on the selection value. This function also fully supports the
CMYK colorspace.

Note: When using with two source images, both images must be the same size. This can be
accomplished with the scale(), getHeight(), or getWidth() function. For more
information, see “scale()” on page 183, “getHeight() ” on page 117, and “getWidth()” on
page 127.

This function can be used in conjunction with the following functions: adjustHsb(), adjustRgb(), blur
(), blurBlur(), blurGaussianBlur(), blurMoreBlur(), blurMotionBlur(), colorize(), composite(), equalize(),
noiseAddNoise(), otherHighPass(), otherMaximum(), otherMinimum(), pixellateMosaic(),
pixellateFragment(), sharpenSharpen(), sharpenSharpenMore(), sharpenUnsharpMask(),
stylizeDiffuse(), stylizeEmboss(), stylizeFindEdges(), and stylizeTraceContour().

Syntax

selection(

[Source @ <user-defined Media object name>]

[Fill @ <value 0..255)]

[X @ <pixel>]

[Y @ <pixel]

[BackColor @ <true, false>]

[Color @ <color in hexadecimal or rgb>]

[Index @ <value 0..16777215>]

[ColorType @ <"Cyans", "Magentas", "Yellows", "Reds", "Greens", "Blues", "Hilites",
"Midtones", "Shadows">]

[Invert @ <true, false>]

[Remove @ <true, false>]

[Opacity @ <value 0..255>]

[Radius @ <value 1..600>]

[layers @ <"layer list">] // (PSD files only)

);

186

MediaRich CORE 6.2 • Programmer's Guide

Parameters

Source -When you use Source, the system interprets the image as a grayscale (if it is not one).
Loading a selection replaces one that is already active.

• Before creating a new selection, you must load() the image. Then, use the Source
parameter to refer to that image by its user-defined Media object name.

• If the source and target images are of different size, use the Fill parameter to specify what
value pixels have in the selection mask that fall outside the size of the selection image. The
default is 0.

• The X parameter determines at what horizontal position the top left corner of the source
image is placed on the target image. If the X parameter is not specified, the selection image will
be centered over the target image horizontally.

• The Y parameter determines at what vertical position the top left corner of the source image is
placed on the target image. If the Y parameter is not specified, the selection image will be
centered over the target image vertically.

• Using Backcolor, Color, Index, or ColorType. Use one of these parameters to create a
selection from an image that includes all pixels that match the specified color or color type.

The color can be specified as the background color, or as all pixels of a specified color, index value, or
color type. In the event that a selection containing everything except a particular color is required,
the invert parameter can be added to the command.

Invert - reverses the opacity values of the current selection (for example, 0->255 and 255->0).

Note: If the invert parameter is used, it will invert both the opacity and the backcolor, color,
and index values. If you wish to invert one but not the other, you will need to write separate
commands.

Remove - de-activates any current selection.

Opacity - alters the current level of transparency for the selection. Applying an opacity level of 128
will increase the transparency level of the selection by 50%. If reduced, the level of the selection
cannot be increased again.

Radius - when the backcolor, color, index, or color type parameter is also specified, this parameter
selects all pixels of colors most similar to the specified color (using the specified color as the starting
point) and increases the range of similar colors included in the selection as the value for Radius
increases. The value for this parameter must be higher than zero. For example:
image.selection(Color @ 0x008000, Radius @ 20);

This example will create a selection consisting of all the colors in the image that aremost similar to
this color green within a radius of 20.

layers - for PSD files, specifies the layers to be included. The layer numbers begin at 0 (background)
and go up. For more information see “load()” on page 137.

Note: The Name parameter is now deprecated.

187

CHAPTER 4 MediaScript Objects and Methods

Example

var Target = new Media();

var Source = new Media();

Target.load(name @ "peppers.tga");

Source.load(name @ "Bears.tga");

Target.selection(source @ Source, opacity @ 240);

Target.adjustHsb(hue @ 75, saturation @ 75);

Target.save(type @ "jpeg");

setColor()

The setColor()method sets the background color, foreground color, and transparency state of an
image. Very few formats support saving of this information, so this function is primarily used in
internal calculations in conjunction with other functions, such as arc() (see page 77) and drawText
() (see page 102), and supports the CMYK colorspace.

When an image is initially loaded into memory, the foreground and background colors are initialized
according to the following order of precedence:

• For indexed images:
• Background color will be index 0.
• Foreground color will be the last indexed color.

• For all other images:
• Background color will be black.
• Foreground color will be white.

Note: If the image’s file type supports them and its background, transparency and/or
foreground colors have been set, those values will be used.

Unless specifically changed, the initial values will be retained and used throughout all subsequent
transformations. To be sure of the values used, it is best to use specific settings.

Syntax

setColor(

[BackColor @ <color in hexadecimal, rgb, or cmyk>]

[ForeColor @ <color in hexadecimal, rgb, or cmyk>]

[BackIndex @ <value 0..16777215>]

[ForeIndex @ <value 0..16777215>]

[Transparency @ (true, false)]

[Popular @ (true, false)]

[Precise <true, false>]

[layers @ <"layer list">] // (PSD files only)

);

188

MediaRich CORE 6.2 • Programmer's Guide

Parameters

Backcolor - specifies the background color.

Forecolor - specifies the foreground color.

This parameter supports a hexidecimal, RGB, or CMYK color specification:

• hexidecimal - color value expressed as a value from 0x000000 to 0xFFFFFF (RGB colorspace) or from
0x00000000 to 0xFFFFFFFF (CMYK colorspace)

• RGB - color value expressed as a value from 0 to 16,777,215
• CMYK - color value expressed as a value from 0 to 4,294,967,295

Colorspace

Always pass a color value appropriate to the colorspace. You can ensure this using the
getPixelFormat() function in your script and then using different hexadecimal values for the RGB
and the CMYK colorspaces in an IF/THEN construction. If getPixelFormat() returns "CMYK," use
the CMYK value (0x plus eight more digits), and otherwise use the RGB value (0x plus six more
digits).

Backindex - specifies the background color as an index value. Direct indexing is primarily used for
indexed images, but can be used for any image type to select a specific pixel value.

Foreindex - specifies the foreground color as an index value.

Important: You cannot specify values for both the Backcolor and Backindex parameters or
for both the Forecolor and Foreindex parameters.

Transparency - if this parameter is set to false, the whole image is considered opaque. If set to
true, the pixels in the image that match the background color are considered transparent.
Transparency is typically used when generating an alpha channel for an image (such as compositing
an image that is not 32-bit). Transparency is also supported when saving to the GIF format and, if 8-
bit or less, to the PNG format.

Popular - if set to true, finds themost popular color or index in the image. For images above 16-bit
color depth, the image is processed at 18-bit resolution.

Note: The Popular parameter overrides any settings specified by the Backcolor,
Forecolor, Backindex or Foreindex parameter. In addition, this parameter does not
support the CMYK colorspace.

Precise - If Popular is specified and this is set to true, themethod uses precision in the
calculation of themost popular color. If set to false (default), the color returned will be a close
approximation of the actual color that appears most often in the image.

layers - for PSD files, specifies the layers to be included. The layer numbers begin at 0 (background)
and go up. For more information see “load()” on page 137.

189

CHAPTER 4 MediaScript Objects and Methods

Example

var image = new Media();

image.load(name @ "car.tga");

image.setColor(backcolor @ 0xC2270B);

image.crop(alg @ "backcolor");

image.save(type @ "jpeg", compressed @ true);

setFrame()

The setFrame()method replaces theMedia object for the specified frame (if available). It is
common to use this function with getFrame() (see page 116 to modify an animation.

Syntax

<object name>.setFrame(

<frame offset>

<source Media object name>

);

Parameters

The frame offset (starting from 1) specifies which frame in the target Media object gets replaced by
the named sourceMedia object (which consists of a single frame).

Example

var image = new Media();

image.load(name @ "Images/clock.gif"); // Load an animated GIF with four frames

image2 = image.getFrame(2);

image2.flip(axis @ "Vertical");

image.setFrame(2, image2);

image.save(name @ "newclock.gif");

190

MediaRich CORE 6.2 • Programmer's Guide

setLayer()

The setLayer()method replaces theMedia object for the specified layer (if available). In
conjunction with getLayer() (see page 118), this is commonly used to modify layer contents
before calling the collapse() (see page 84) function.

Syntax

<object name>.setLayer(

<layer index, object name>

);

Parameters

The first parameter represents the layer index (the first layer in a file is layer 0).

The second parameter names theMedia object that contains the data with which the layer is
replaced.

Example

var image = new Media();

var Layer = new Media();

Layer = image.getLayer(2);

Layer.rotate(angle @ 30);

image.setLayer(2, Layer);

setLayerBlend()

The setLayerBlend()method sets the blending mode of theMedia layer with the specified index
(if available).

Syntax

<object name>.setLayerBlend(

<layer index>

<"blending mode">

);

Parameters

The first parameter specifies the layer index (starting from 0).

The second parameter specifies the blending mode to be used. Blend options are: Normal, Darken,
Lighten, Hue, Saturation, Color, Luminosity, Multiply, Screen, Dissolve, Overlay,
HardLight, SoftLight, Difference, Exclusion, Dodge, ColorBurn, Under, Colorize
(causes only the hue component of the source to be stamped down on the image).

Note: The Burn option is deprecated. ColorBurn results in the same blend.

191

CHAPTER 4 MediaScript Objects and Methods

Example

var image = new Media();

image.setLayerBlend(2, "Difference");

setLayerEnabled()

The setLayerEnabled()method sets the specified layer as either enabled or disabled.

If you use the collapse() function without naming specific layers, MediaRich collapses all enabled
layers and ignores disabled layers. Use the setLayerEnabled() function (equivalent to the eye
icon in Photoshop) to enable/disable a layer. Use the getLayerEnabled() function to determine if
a layer is enabled or not.

Syntax

<object name>.setLayerEnabled(

<layer index>,

<true, false>

);

Parameters

The first parameter specifies the desired layer index (starting from zero).

If setLayerEnabled is set to true, the layer is enabled; if set to false, the layer is disabled.

Example

if (image.getLayerEnabled(2) == false)

image.setLayerEnabled(2, true);

...}

setLayerHandleX()

The setLayerHandleX()method sets the HandleX of theMedia layer with the specified index (if
available).

Syntax

<object name>.setLayerHandleX(

<layer index>

<"position">

);

Parameters

The first parameter specifies the desired layer index (starting from zero).

The second parameter sets the attachment point on the x-axis for the selected layer. The default is
Center. Other options are Left and Right.

192

MediaRich CORE 6.2 • Programmer's Guide

Example

var image = new Media();

image.setLayerHandleX(2, "Right");

setLayerHandleY()

The setLayerHandleY()Method sets the HandleY of theMedia layer with the specified index (if
available).

Syntax

<object name>.setLayerHandleY(

<layer index>

<"position">

);

Parameters

The first parameter specifies the desired layer index (starting from zero).

The second parameter sets the selected layer’s attachment point on the x-axis. The default is
Middle. Other options are Top and Bottom.

Example

var image = new Media();

image.setLayerHandleY(2, "Bottom");

setLayerOpacity()

The setLayerOpacity()method sets the opacity of theMedia layer with the specified index (if
available).

Syntax

<object name>.setLayerOpacity(

<layer index>

<value 0..255>

);

Parameters

The first parameter specifies the desired layer index (starting from zero).

The second parameter specifies opacity of the selected layer, with a value of 255 indicating
completely solid.

Example

var image = new Media();

image.setLayerOpacity(2, 128);

193

CHAPTER 4 MediaScript Objects and Methods

setLayerPixels()

The setLayerPixels()method replaces the pixel data in a named layer of the target Media object
with the pixel data from a layer in the sourceMedia object. Any attributes associated with the target
layer are preserved.

Syntax

<object name>.setLayerPixels(

<layerIndex>,

<media>

);

Parameters

layerIndex - specifies the layer in the target image that gets its pixels replaced. The default is the
first layer (starting from zero).

media - specifies the sourceMedia object.

Important: Before you can use setLayerPixels(), you must load() the source image. If
the source image has multiple layers, the first one is used.

Example

var Target = new Media();

var Source = new Media();

Target.load (name @ "banner.psd");

Source.load (name @ "fishes.psd");

Target.setLayerPixels(3,Source);

Target.save(type @ "jpeg");

setLayerX()

The setLayerX()method sets the X composite offset of theMedia layer with the specified index (if
available).

Syntax

<object name>.setLayerX(

<layer index>

<position>

);

Parameters

The first parameter specifies the desired layer index (starting from zero).

The second parameter specifies the position of the selected layer along the x-axis of the composite
image, with the layer center point used as the anchor point. For example, a value of 50 positions the

194

MediaRich CORE 6.2 • Programmer's Guide

center point at pixel 50 on the x-axis of the composite image.

Example

var image = new Media();

image.setLayerX(2, 50);

setLayerY()

The setLayerY()method sets the Y composite offset of theMedia layer with the specified index (if
available).

Syntax

<object name>.setLayerY(

<layer index>

<position>

);

Parameters

The first parameter specifies the desired layer index (starting from zero).

The second parameter specifies the position of the selected layer along the y-axis of the composite
image, with the layer center point used as the anchor point. For example, a value of 100 positions the
center point at pixel 100 on the y-axis of the composite image.

Example

var image = new Media();

image.setLayerY(2, 100);

setMetadata()

The setMetadata()method attaches metadata specified by data to the image for the specified
format. If data is not specified or null, clear any metadata for the specified format. Data must be an
appropriate XML document for the format specified and should be validated against the relevant
schema.

Note: For Exif and IPTC formats, only elements present in the respective schema will be added
to the image on save. Any other data present in the document will be ignored.

Syntax

<object name>.setMetadata(

<"format">,

<"data">

);

195

CHAPTER 4 MediaScript Objects and Methods

Parameters

format - the format of the document specified by data. Valid values are Exif, IPTC, and XMP.

data - a string containing an XML document corresponding to format.

setPixel()

The setPixel()method sets the color of one pixel to the chosen color value. This works in both
RGB and CMYK colorspaces.

Syntax

<objectname>.setPixel(

[x @ <"pixel">]

[y @ <"pixel">]

[transparency @ 0-255, or true or false]

[color @ <"color">]

[layers @ <"layer list">] // (PSD files only)

);

Parameters

x and y - required parameters that specify the coordinates of the target pixel. The top left corner of
an image is represented by the coordinates 0,0.

transparency - this optional parameter sets the alpha channel of the pixel to that value. Valid
values are 0-255. If this parameter is not specified, the alpha channel (if any) of the original image
remains unchanged.

color - this optional parameter specifies the color that will replace the designated pixel. The default
value for color is the image’s foreground color. For more information about setting an image’s
foreground color, see “setColor()” on page 188.

layers - for PSD files, specifies the layers to be affected. The layer numbers begin at 0 (background).
For more information see “load()” on page 137

The foreground color may vary with this function, depending on the original Media object. If the
object has a set foreground color, or it is set with the setColor() function, MediaRich uses the set
color. However, if the object has no set foreground color, MediaRich does the following:

• For objects with 256 colors or less, MediaRich uses the last color index.
• For objects with 15-bit or greater resolution (including the CMYK colorspace), MediaRich uses

white.

Example

Image = new Media();

FindColor = "0x000000";

MakeColor = "0xff00ff";

196

MediaRich CORE 6.2 • Programmer's Guide

Image.load(name @ "image/32bit.psd");

Rows = Image.getWidth();

Columns = Image.getHeight();

for (x = 0; x < Rows; x++)

{

for (y = 0; y < Columns; y++)

{

if (Image.getPixel(x @ x, y @ y) == FindColor)

{

Image.setPixel(x @ x, y @ y, rgb @ MakeColor);

}

}

}

Image.save(type @ "jpeg")

setResolution()

The setResolution()method changes the DPI of the image in memory and fully supports Media
objects within the CMYK colorspace.

Note: This information can be stored only in the following formats: BMP, EPS, JPEG, PCT, PCX,
PNG, PSD, and TIFF.

Syntax

setResolution(

[Dpi @ <value 0.00 to 10,000.00>]

[XDpi @ <value 0.00 to 10,000.00>]

[YDpi @ <value 0.00 to 10,000.00>]

[layers @ <"layer list">] // (PSD files only)

);

Parameters

Dpi - sets the resolution of the image in memory. The resolution valuemust be greater than 0, but
may be decimal.

Xdpi and Ydpi - set the resolution on their respective axes only.

Note: When the Dpi parameter and one or both of the single axes values are given, the axis
value overrides the DPI value.

layers - for PSD files, specifies the layers to be affected. The layer numbers begin at 0 (background)
and go up. For more information, see “load()” on page 137.

197

CHAPTER 4 MediaScript Objects and Methods

Example

var image = new Media();

image.load(name @ "peppers.tga");

image.setResolution(dpi @ 300, xdpi @ 200);

image.save(type @ "jpeg");

setSourceProfile()

The setSourceProfile()method sets the embedded profile for an image to the specified source
profile. This profile replaces any existing embedded profile for the image.

Note: The colorspace of the specified source profile must match the colorspace of the image.

Syntax

setSourceProfile(

sourceProfile @ <"filename.icc">

);

Parameters

SourceProfile - specifies the profile to use as the images new embedded profile.

For more information about specifying profiles, see “colorCorrect()” on page 86. For more
information about color management, see “MediaRich Color Management” on page 318.

sharpenSharpen()

The sharpenSharpen()method makes the edges in the imagemore pronounced.

Note: This function is “selection aware”—if a selection is made, the system applies the function
based on the current selection. For more information about making selections, see “selection()”
on page 186.

Syntax

sharpenSharpen();

Parameters

This function has no parameters.

Example

var image = new Media();

image.load(name @ "peppers.tga");

image.sharpenSharpen();

image.save(type @ "jpeg");

198

MediaRich CORE 6.2 • Programmer's Guide

sharpenSharpenMore()

The sharpenSharpenMore()method sharpens the clarity of an image. This is similar to the
sharpenSharpen() function, but to a greater extent.

Note: This function is “selection aware”—if a selection is made, the system applies the function
based on the current selection. For more information about making selections, see “selection()”
on page 186.

Syntax

sharpenSharpenMore();

Parameters

This function has no parameters.

Example

var image = new Media();

image.load(name @ "peppers.tga");

image.sharpenSharpenMore();

image.save(type @ "jpeg");

199

CHAPTER 4 MediaScript Objects and Methods

sharpenUnsharpMask()

The sharpenUnsharpMask()method enhances the edges and details of an image by exaggerating
the differences between the original image and a Gaussian-blurred version.

Note: This function is “selection aware”—if a selection is made, the system applies the function
based on the current selection. For more information about making selections, see “selection()”
on page 186.

Syntax

sharpenUnsharpMask(

[Radius @ <value 0.10..250>]

[Amount @ <value 1..500>]

[Threshold @ <value 1..255>]

);

Parameters

Radius - specifies the extent of the blurring effect. The default is 1.

Amount - specifies the extent of the enhancing effect. The default is 50.

Threshold - specifies the degree to which a blurred version of a pixel must be different from the
original version before the enhancement takes effect. The default is 0.

Example

var image = new Media();

image.load(name @ "peppers.tga");

image.sharpenUnsharpMask(Radius @ 18, Amount @ 450, Threshold @ 125);

image.save(type @ "jpeg");

200

MediaRich CORE 6.2 • Programmer's Guide

sizeText()

The sizeText()method returns the width, height, and lines for the specified parameters.

Note: This function is available on Windows only.

Syntax

sizeText(

[text @ <"string">]

[font @ <"font family">]

[style @ <"modifier">]

[Size @ <value 1..4095>]

[justify @ <"justify">]

[Justify @ <"left", "center", "right", "justified">]

[spacing @ <"spacing">]

[Line @ <value 01. to 10>]

[smooth @ <true, false>]

[clearType @ <"clearType">]

[kern @ <true, false>]

[ClearType @ <true, false>] //(windows only)

);

Return values

width - the overall width of the text in pixels.

height - the overall height of the text in pixels.

lines - the number of lines of text that will be drawn.

Parameters

Font - specifies the TrueType or PostScript font family name to be used, for example, Arial.
MediaRich supports Type 1 (.pfa and .pfb) PostScript fonts only.

Note: The size of the font in pixels is dependent on the resolution of the resulting image. If the

201

CHAPTER 4 MediaScript Objects and Methods

resolution of the image is not set (zero), the function uses a default value of 72 DPI.

The default location for fonts specified in a MediaScript is the fonts file system which includes both
theMediaRich Shared/Originals/Fonts folder and the default system fonts folder. If a MediaScript
specifies an unavailable font, MediaRich generates an error.

Note: You can modify theMediaRich server local.properties file to change the default fonts
directory. Refer to theMediaRich Installation and Administration Guide for more
information.

Style - specifies the font style. You can use any combination ofmodifiers. Each modifier should be
separated by a space character.

Note: The Style parameter is not available ifMediaRich is running on Mac or Linux.

Weight modifiers modify the weight (thickness) of the font. Valid weight values, in order of increasing
thickness, are the following:

• “thin”
• “extralight” or “ultralight”
• “light”
• “normal” or “regular”
• “medium”
• “semibold” or “demibold” (“semi” or “demi” are also acceptable)
• “bold”
• “extrabold” or “ultrabold” (“extra” or “ultra” are also acceptable)
• “heavy” or “black”

Other Style parameters are Underline, Italic or Italics, and Strikethru or Strikeout).

Note: You can combine Style parameters. For example: Style @ “Bold Italic”

Text - specifies the text to be drawn. The text string must be enclosed in quotes. To indicate a line
break, insert \n into the text.

Size - the point size of the font to be used. The default size is 12.

Justify - specifies how the text will be justified. The default is center. Other options are left,
right, and justified. This parameter only affects text with multiple lines.

Wrap - if specified, uses the value to force a new line whenever the text gets longer than the specified
number of pixels (in this case, correct word breaking is used).

Line - specifies the line spacing. The default spacing between lines of text is 1.5.

Smooth - specifies that the text is drawn with five-level anti-aliasing.

202

MediaRich CORE 6.2 • Programmer's Guide

Spacing - adjusts the spacing between the text characters. The default is 0. A negative value draws
the text characters closer together.

Kern - if set to true, optimizes the spacing between text characters. By default this is set to true. If
you do not want to use kerning, this must be specified as false.

Note: PostScript fonts store the kerning information in a separate file with an .afm extension.
This file must be present in order for kerning to be applied to the text.

ClearType - if specified as true, theWindows ClearType text renderer will be used if available.

stylizeDiffuse()

The stylizeDiffuse()method applies a filter that makes the image appear as though viewed
through a soft diffuser, with options to lighten or darken the effect.

Syntax

stylizeDiffuse(

[Radius @ <value 0..10000>]

[Mode @ <"mode"]

);

Note: This function is “selection aware”—if a selection is made, the system applies the function
based on the current selection. For more information about making selections, see “selection()”
on page 186.

Parameters

Radius - specifies the extent of the diffusion effect. The default is 1 (almost no effect).

Mode - indicates the diffusion mode, such as Lighten and Darken. The default is Normal (no
lightening or darkening effect).

Example

var image = new Media();

image.load(name @ "peppers.tga");

image.stylizeDiffuse(Radius @ 10, Mode @ "Lighten");

image.save(type @ "jpeg");

203

CHAPTER 4 MediaScript Objects and Methods

stylizeEmboss()

The stylizeEmboss()method applies a filter that makes the image appear as though embossed
on paper.

Note: This function is “selection aware”—if a selection is made, the system applies the function
based on the current selection. For more information about making selections, see “selection()”
on page 186.

Syntax

stylizeEmboss(

[Height @ <value 1..10>]

[Angle @ <value -360..360>]

[Amount @ <value 1..500>]

);

Parameters

Height - determines the depth of the embossing effect. The default is 3.

Angle - specifies the angle of the light source. The default is 135 (light source comes from the upper
left).

Amount - specifies the extent of the effect; the higher the value, the greater the detail. The default is
100.

Example

var image = new Media();

image.load(name @ "peppers.tga");

image.stylizeEmboss(Height @ 2, Angle @ 90, Amount @ 250);

image.save(type @ "jpeg");

204

MediaRich CORE 6.2 • Programmer's Guide

stylizeFindEdges()

The stylizeFindEdges()method traces the edges (areas of significant transitions) of the image
with broad lines.

Note: This function is “selection aware”—if a selection is made, the system applies the function
based on the current selection. For more information about making selections, see “selection()”
on page 186.

Syntax

stylizeFindEdges(

[Threshold @ <value 0..255>]

[Grayscale @ <true, false>]

[Mono @ <true, false>]

[Invert @ <true, false>]

);

Parameters

Threshold - specifies how sharp an edgemust be to included. The default is 0.

Grayscale - produces a monochromatic result. The default is false.

Mono - when set to true, causes all edges above the threshold value to default to 255. The default is
false.

Invert - reverses the default foreground and background colors. The default is false.

Example

var image = new Media();

image.load(name @ "peppers.tga");

image.stylizeFindEdges(Threshold @ 125, Grayscale @ true, Mono @ true, Invert @
true);

image.save(type @ "jpeg");

205

CHAPTER 4 MediaScript Objects and Methods

stylizeTraceContour()

The stylizeTraceContour()method creates a contour-line effect by locating the transitions of
themore significant bright areas and outlining them for each color channel.

Note: This function is “selection aware”—if a selection is made, the system applies the function
based on the current selection. For more information about making selections, see “selection()”
on page 186.

Syntax

stylizeTraceContour(

[Level @ <value 0..255>]

[Upper @ <true, false>]

[Invert @ <true, false>]

);

Parameters

Level - indicates the level of each color gun. The default is 128.

Upper - if set to true, causes the upper edge to be delineated. The default is false (the lower edge
is delineated).

Invert - if set to true, reverses the default foreground and background colors. The default is
false.

Example

var image = new Media();

image.load(name @ "peppers.tga");

image.stylizeTraceContour(Level @ 96, Upper @ true, Invert @ true);

image.save(type @ "jpeg");

206

MediaRich CORE 6.2 • Programmer's Guide

zoom()

The zoom()method zooms in on a specified portion of theMedia object and fits it to the specified
size. This is equivalent to a crop followed by a scale. This function fully supports the CMYK
colorspace.

Syntax

zoom(

[Alg @ <"Fast", "Smooth", "Outline", "Best">]

[Fit @ <"Full", "Width", "Height">]

[Xs @ <pixels>]

[Ys @ <pixels>]

[X @ <left pixel>]

[Y @ <top pixel>]

[Scale @ <value>]

[PreserveBackground @ <true, false>]

[PreserveBackgroundCutoff @ <value 0..100>]

[PadColor @ <color in hexadecimal or rgb>]

[PadIndex @ <value 0..16777215>]

[Transparency @ <value 0..255>]

[layers @ <"layer list">] // (PSD files only)

);

Parameters

Alg - specifies the algorithm that will be used. The default algorithm is fast. The outline algorithm
should be used for black and white images only.

Fit - specifies the sizing type for theMedia. The default is Full.

Xs and Ys - specify the destination size of theMedia. The resulting image always fits these
dimensions regardless of the scale and the sourceMedia when Fit is set toFull. Otherwise, it is
fitted to Xswhen Fit is set to Width, or fitted to Yswhen Fit is set to Height.

X and Y - specify the position of the top left corner of the region to be zoomed. These coordinates are
specified relative to the destination Media at scale @ 1. specify

207

CHAPTER 4 MediaScript Objects and Methods

Scale - specifies a real value and gives themagnification of the resulting image. For a value of 1, the
wholeMedia fits within the specified size.

PreserveBackground - when scaling an image that contains an object surrounded by a solid
background color, setting this parameter to true avoids anti-aliasing the edge of the object with the
background. Anti-aliasing is a method of eliminating jagged edges by blending pixel colors with the
background. When working with an object on a solid background, however, most users find it
preferable to maintain a sharp, clean edge, because the blending can often produce an undesired
halo effect.

PreserveBackgroundCutoff - specifies the threshold for PreserveBackground. The default
threshold percentage is 67, which means that the background color will be preserved unless 67% or
more of the pixels use the background color.

Padcolor or Padindex - specifies the color to be used where the new image dimensions extend
beyond the current image. If a pad color is not specified, the image’s background color is used by
default. For more information about setting an image’s background color, see setColor().

Transparency - specifies the transparency (255 is opaque and 0 is transparent) of the padded
area’s alpha channel. This parameter is useful when the cropped image is used in a composite().

Note: If the cropped image is not 32-bit before cropping, the transparency information is not
used on the next composite() function.

layers - for PSD files, specifies the layers to be included. The layer numbers begin at 0 (background)
and go up. For more information see “load()” on page 137.

Example

var image = new Media();

image.load(name @ "pasta.tga");

image.zoom(xs @ 100, ys @ 100, scale @ 2, x @ 20, y @ 30);

image.save(name @ "Result.tga");

File Object

The File object provides access to a file or directory. The File object is useful if you need information
about a file. For example, you would use the File object when you need to check the file before
loading the contents of the file.

File() constructor

The File object is constructed using the File() constructor.

Syntax

var fileObject = new File(<filePath>);

208

MediaRich CORE 6.2 • Programmer's Guide

Parameters

filename - a string containing the name (and optionally the path) of the file with which the object is
to be associated. If the string does not specify a file system, the default is the write file system. See
“File Systems” on page 39 for more information.

File object methods

• clear()
• clearCached()
• close()
• copy()
• exists()
• freeSpaceGB()
• getFileExtension()
• getFileName()
• getFileNameNoExt()
• getFilePath()
• getFilePathNoExt()
• getLastAccessed()
• getLastModified()
• getParentPath()
• getSize()
• getType()
• isDirectory()
• isFile()
• isShared()
• length()
• list()
• mkdir()
• read()
• readAll()
• readBinary()
• readNextLine()
• remove()
• rename()
• rmdir()
• setShared()
• write()
• writeBinary()

209

CHAPTER 4 MediaScript Objects and Methods

clear()
The clear()method clears the contents of the file pointed to by the file object, if the file exists.

Syntax

<object name>.clear();

Parameters

This function takes no parameters.

clearCached()
The clearCached()method causes any cached version of a file to be discarded. Provides a
solution for temporarily bad images that make it into the FSNet filesystem's cache.

Syntax

<object name>.clearCached();

Example

var filepath = "http://www.google.com/intl/en/images/logo.gif";

try

{

// Try to open the image

image.load(name @ filepath);

}

catch (ex)

{

// The open failed, so clear the cache and try again

var f = new File(filepath);

f.clearCached();

image.load(name @ filepath);

}

Parameters

This function takes no parameters.

close()
The close()method closes the file and flushes any output immediately.

Syntax

<object name>.close();

210

MediaRich CORE 6.2 • Programmer's Guide

Parameters

This function takes no parameters.

copy()
The copy()method copies the contents of the file to a new file named “destFile”. The object’s
original filename is unchanged.

Syntax

<object name>.copy(<"destFile"> [, startPosition] [, length]);

Parameters

destFile - a string containing the name of the destination file. If the string does not specify a file
system, the default is the write file system. See “File Systems” on page 39 for more information.

startPosition - an optional 64-bit value that sets the copy to begin reading the source file from
that byte offset. If not specified, the starting position is the start of the file.

length - an optional 64-bit value that indicates howmany bytes to copy to the destination file. If
not specified, the default behavior is to copy the remaining bytes in the source file.

exists()
The exists()method returns true if the File object points to an existing file or directory;
otherwise, it returns false.

Syntax

var fileExists = <object name>.exists();

Parameters

This function takes no parameters.

freeSpaceGB()
The freeSpaceGB()method returns a floating point number specifying free space in gigabytes on
the volume containing the file.

Syntax

var freeSpaceinGB = <object name>.freeSpaceGB();

Parameters

This function takes no parameters.

211

CHAPTER 4 MediaScript Objects and Methods

getFileExtension()
The getFileExtension()method returns the extension of the file name portion of the object.

Syntax

var ext = <object name>.getFileExtension();

If the object file path is:
Equilibrium/MediaRichCore/Shared/Originals/Media/camera.png

getFileExtension() returns: .png

Parameters

This function takes no parameters.

getFileName()
The getFileName()method returns the filename portion of the object’s path.

Syntax

var fileName = <object name>.getFileName();

If the object’s file path is:
Equilibrium/MediaRichCore/Shared/Originals/Media/camera.png

getFileName() returns: camera.png

Parameters

This function takes no parameters.

getFileNameNoExt()
The getFileNameNoExt()method returns the filename portion of the object’s path, without
extension.

Syntax

var fileNameNoExt = <object name>.getFileNameNoExt();

If the object file path is:
Equilibrium/MediaRichCore/Shared/Originals/Media/camera.png

this function returns: camera

Parameters

This function takes no parameters.

212

MediaRich CORE 6.2 • Programmer's Guide

getFilePath()
The getFilePath()method returns the full file path for the object.

Syntax

var filePath = <object name>.getFilePath();

If the object is created as:
var f = new File(“camera.png”);

this method returns: write:/camera.png

Parameters

This function takes no parameters.

getFilePathNoExt()
The getFilePathNoExt()method returns the file path for the object with the extension removed.

Syntax

var filePathNoExt = <object name>.getFilePathNoExt();

If the object is created as:
var f = new File(“camera.png”);

themethod returns: write:/camera

Parameters

This function takes no parameters.

getLastAccessed()
The getLastAccessed()method returns the last accessed date in seconds sincemidnight January
1, 1970. If the file does not exist or cannot be accessed, the function returns 0.

Syntax

var accTimeInSecs = <object name>.GetLastAccessed();

Parameters

This function takes no parameters.

213

CHAPTER 4 MediaScript Objects and Methods

getLastModified()
The getLastModified()method returns the last modified date as seconds sincemidnight
January 1, 1970. If the file does not exist or cannot be accessed, the function returns 0.

Syntax

var modTimeInSecs = <object name>.getLastModified();

Parameters

This function takes no parameters.

To use the return value as an argument to newDate(), multiply it by 1000:
var modDate = new Date(modTimeInSecs * 1000);

getParentPath()
The getParentPath()method returns the parent path for the object.

Syntax

var parentPath = <object name>.getParentPath();

If the object file path is the following:
write:/camera.png

themethod returns: write:/

Parameters

This function takes no parameters.

getSize()
The getSize()method returns the file size in bytes. If file does not exist, cannot be accessed, or is
empty, the function returns 0.

Syntax

var sizeInBytes = <object name>.getSize();

Parameters

This function takes no parameters.

getType()
The getType()method returns the type name of this object, which is “File”.

Syntax

var objectTypeName = <object name>.getType();

214

MediaRich CORE 6.2 • Programmer's Guide

Parameters

This function takes no parameters.

isDirectory()
The isDirectory()method returns true if the File object points to a directory; otherwise, it
returns false.

Syntax

var isDirectory = <object name>.isDirectory();

Parameters

This function takes no parameters.

isFile()
The isFile()method returns true if the File object points to a regular file; otherwise, it returns
false.

Syntax

var isFile = <object name>.isFile();

Parameters

This function takes no parameters.

isShared()
The isShared()method returns true if the File object is shared. This would be the case if
setShared() (see page 219) was called for the object to allow shared write.

Syntax

var isShared = <object name>.isShared();

Parameters

This function takes no parameters.

length()
The length()method returns an integer containing the number of text lines in the file.

Syntax

var numLines = <object name>.length();

215

CHAPTER 4 MediaScript Objects and Methods

Parameters

This function takes no parameters.

list()
If the File object represents a directory, the list()method returns an array of File objects
representing the directory entries. If the named File object does not represent a directory (or the
directory is empty), it returns an empty array.

Syntax

var files = <object name>.list();

for (var f in files)

print(files[f].getFileName() + “\n”);

Parameters

This function takes no parameters.

mkdir()
The mkdir()method creates the directory (and any non-existent parent directories) specified by the
current File object.

Syntax

<object name>.mkdir();

Parameters

This function takes no parameters.

read()
The read()method reads the specified line number from the file and returns it as a string. If the
specified line is not found, themethod returns undefined.

Note: Line numbers start at zero (0), not at one (1).

Syntax

var line = <object name>.read(<index>);

Parameters

index - specifies the line number and can range from 0 to number-of-lines - 1.

216

MediaRich CORE 6.2 • Programmer's Guide

readAll()
The readAll()method reads the entire contents of the file and returns it as a string.

Syntax

var fileContents = <object name>.readAll();

Parameters

This function takes no parameters.

readBinary()
The readBinary()method reads the specified number of bytes from the file and returns it as a
buffer/string object. When the end of the file is reached, the function will continually return an array
of 0 bytes.

The starting position can be specified in situations where the script does not need to read from the
start of the file. The returned buffer can be treated as binary data using the specialized Buffer object
methods or simply used as a string.

Syntax

var buffer = <object name>.readBinary(<length> [, position]);

Parameters

length - specifies the number of bytes to read from the file. If you read past the end of the file, the
request will truncate the data to the end of the file.

position - specifies the byte offset into the file to read the data from. If you specify a position past
the end of the file, an empty buffer object is returned. If not specified, the file is read from the
current file position.

Example

// Read the TIFF architecture identifier from an image and convert it into a string.

// This example is more complex than it has to be in order to demonstrate a couple of
the Buffer object methods.

var f = new File("img.tif");

var buf = f.readBinary(16, 0); // read the TIFF header from the start of the file

if (buf.size >= 2)

var arch = buf.subBuffer(0, 2).toString(); // extract the arch id as a string (will
be "II" or "MM")

217

CHAPTER 4 MediaScript Objects and Methods

readNextLine()
The readNextLine()method reads the next line from the file referenced by the File object, and
returns a string containing the text in that line. It returns undefined at the end of the file.

Syntax

var line = <object name>.readNextLine();

Parameters

This function takes no parameters.

remove()
The remove()method deletes the file referenced by the File object.

Syntax

<object name>.remove();

Parameters

This function takes no parameters.

rename()
The rename()method renames the file referenced by the File object (but it does not rename the
object).

Syntax

<object name>.rename(<newname>);

Parameters

newname - a string containing the new file name.

rmdir()
The rmdir()method removes the specified directory and returns true if the directory could be
removed and false if it could not.

Syntax

var success = <object name>.rmdir(<recurse>);

Parameters

recurse - Boolean - if true, the directory and all of its content is removed. If false, the directory is
only deleted if it is empty.

218

MediaRich CORE 6.2 • Programmer's Guide

setShared()
The setShared()method declares a file sharable, so multiple threads can write to it.

Syntax

<object name>.setShared(<shared>);

Parameters

shared - Boolean - if true, the file will be sharable from nowon. If false, the file will no longer be
sharable.

write()
The write()method writes a string to the end of the file.

Syntax

<object name>.write(<string>);

Parameters

string - string to write.

writeBinary()
The writeBinary()method writes a binary block to the file.

Syntax

<object name>.writeBinary(<blob>);

Parameters

blob - an object containing binary data.

Themost common use is to write binary objects created by QuickTime.

219

CHAPTER 4 MediaScript Objects and Methods

System Object and Methods

The System object provides access to system information. For example, you might need to retrieve
information about the system to determine support for another object type function.

This object implements the following methods:

Method Usage

fontExists() Returns true if a font with the specified name exists
It takes the font name as its only parameter

getCPUName() Returns the name of the CPU architecture

getFontList() Returns an array containing the names of all fonts known by the system

getFreeMemory() Returns the amount of free system memory
Example:
print("System free memory is " +
System.getFreeMemory() + " bytes.\n");

Note: Available only in Windows.

getOSName() Returns the name of the operating system

getTotalMemory() Returns the amount of total system memory
Example:
print("System total memory is " +
System.getTotalMemory() + " bytes.\n");

Note: Available only in Windows.

sendScriptStatus
(<evt>)

Publishes the specified evt string to all subscribers
Note: There must be some way to subscribe to these events, and there
must be some list of what events are in use.

resetScriptTimer Resets the script timer

pushScriptTimeout
(<time>)

Changes the script timeout to time, saving the current value on the stack

popScriptTimeout() Restores the script timeout to the value from the stack
If the stack is empty, the timeout is unchanged.
Note: resetScriptTimer() should be called before this method if the
tos is smaller than the current value. Otherwise the script will timeout
immediately.

220

MediaRich CORE 6.2 • Programmer's Guide

XmlDocument Object

MediaRich allows users to interact with XML documents and supports all the objects, properties,
and methods of the Document Object Model (DOM) Level 1 Core. The DOM Core is an application
programming interface for XML documents. For information on using the DOM Level 1 Core objects,
properties, and methods, refer to http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/

If your MediaScript uses the XmlDocument object, it must reference the xml.ms file that installs with
MediaRich using the #include directive. Include the following line at the beginning of your script:
#include "sys:xml.ms";

For more information about using the #include directive, see “TheMediaScript #include Directive”
on page 37.

The XmlDocument object is constructed using the new XmlDocument() constructor.

Syntax

var Test = new XmlDocument();

Methods

The XmlDocument object has all themethods of the DOM’s Document class, as well as the following
methods:

• loadFile()
• loadString()
• save()

XmlDocument Object Properties
The XmlDocument object has all the properties of the DOM’s Document class, as well as the loaded
property.

loaded - A Boolean property, the value of which is determined by whether or not the XmlDocument
is loaded.

Syntax

<object name>.loaded;

loadFile()
The loadFile()method loads an XML document from the file system.

Syntax

<object name>.loadFile(

<"filename.xml", "virtualfilesystem:/filename.xml">

);

221

http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/

CHAPTER 4 MediaScript Objects and Methods

Parameters

The loadFile() function accepts an XML filename as its only parameter. By default, MediaRich
looks for XMLDocument files in the write file system which points to the following directory:
MediaRichCore/Shared/Originals/Media

Note: You can modify theMediaRich server local.properties file to change the default Media
directory. See “File Systems” on page 39 for more information.

MediaRich allows supports setting virtual file systems and can load files from that location. Virtual file
systems are defined in theMediaRich server local.properties file. For example, if you define XML: to
represent the path C:/010102/XML/ in the local.properties file, you can use files from the XML
directory with the loadFile() function:
XMLDoc.loadFile("XML:/customersUS.xml");

loadString()
The loadString()method loads an XML file as a string, rather than as a file.

Syntax

<object name>.loadString(

<"XML string">

);

Parameters

This function accepts an XML string as its only parameter. The stringmust include valid XML start
and end tags.

Example

var test = new XMLDocument();

test.loadString("<html>sale</html>");

save()
The save()method saves an XML document to the file system.

Syntax

<object name>.save(

<"filename.xml", "virtualfilesystem:/filename.xml">

);

222

MediaRich CORE 6.2 • Programmer's Guide

Parameters

This function accepts an XML filename as its only parameter. By default, MediaRich saves
XMLDocument files in the write file system that points to the following directory:
MediaRichCore/Shared/Originals/Media

Note: You can modify theMediaRich server local.properties file to change the default Media
directory. See “File Systems” on page 39 for more information.

MediaRich also supports setting virtual file systems and then save files to that location. Virtual file
systems are also defined in theMediaRich server local.properties file. For example, if you define
XML: to represent the path C:/010102/XML/ in the local.properties file, you can use files from the
XML directory with the save() function:
XMLDoc.save("XML:/customersUS.xml");

TextResponse Object

The TextResponse objects allow users to create response objects that take strings and save text files
(plain text, html, or xml). There are no properties for this object.

The TextResponse object is constructed using the new TextResponse() constructor.

Syntax

var strObject = TextResponse(

<textType>

);

Parameters

textType - specifies the type of text using one of the following predefined values:

• TextResponse.TypePlain to save text as a plain text file with extension .txt
• TextResponse.TypeHtml to save text as an HTML file with extension .html
• TextResponse.TypeXml to save text as an XML file with extension .xml

Example

#include "sys:/TextResponse.ms"

function main() {

var strObject = new TextResponse(TextResponse.TypePlain);

strObject.setText("FOO FOR YOU");

strObject.append("\nAND FOO FOR ME");

resp.setObject(strObject, RespType.Streamed);

}

223

CHAPTER 4 MediaScript Objects and Methods

Methods

The TextResponse object implements the following methods:

• append()
• getText()
• getTextType()
• getType()
• setText()
• setTextType()

append()
The append()method appends the given text string to the text associated with the named object.

Syntax

<object name>.append(

<"text string">

);

Parameters

This function takes only a text string, which must be enclosed in quotation marks.

getText()
The getText()method returns the text associated with the named object.

Syntax

<object name>.getText();

Parameters

This function has no parameters.

getTextType()
The getTextType()method returns the text type associated with this object:
TextResponse.TypePlain, TextResponse.TypeHtml, or TextResponse.TypeXml.

For more information about text types, see “TextResponse Object” on page 223.

Syntax

<object name>.getTextType();

Parameters

This function has no parameters.

224

MediaRich CORE 6.2 • Programmer's Guide

getType()
The getType()method returns the type of the named TextResponse object, which is always
TextResponse.

Syntax

<object name>.getType();

Parameters

This function has no parameters.

setText()
The setText()method sets the text string associated with this object.

Syntax

<object name>.setText(

<"text string">

);

Parameters

This function takes only a text string, which must be enclosed in quotation marks.

setTextType()
The setTextType()method sets the text type associated with this object.

Syntax

var strObject = TextResponse(

<textType>

);

Parameters

textType - specifies the text type using one of the following predefined values:

• TypePlain - saves text as a plain text file with extension .txt
• TypeHtml - saves text as an HTML file with extension .html
• TypeXml - saves text as an XML file with extension .xml

225

CHAPTER 4 MediaScript Objects and Methods

TextExtraction Object

The TextExtraction object allows users to extract text from the file types indicated in the Image and
Office document tables in theMediaRich CORE Installation and Administration Guide (“File
Format Support” appendix).

TextExtraction object property

VisualIntegrity.UseUnicode

This defaults to true if not present in any of the local properties files. When true, the default behavior
of TextExtraction.getEntireText() is to return Unicode character strings. If false, the text is
forced to ASCII.

Note: This setting only affects PDF and AI text extraction—Office text extraction is always
Unicode and EPS/PS text extraction is always ASCII. However, ASCII text extraction is possible for
presentation-type formats, such as PowerPoint.

The TextExtraction object is constructed using the TextExtraction() constructor.

Syntax

var strObject = TextExtraction(<filePath>);

Parameters

filePath - the path to the file from which text is to be extracted.

Methods

The TextExtraction object implements the following methods:

• getEntireText([useUnicode])
• getText()

getEntireText([useUnicode])
The getEntireTextmethod provides Unicode text extraction for PDF/EPS/PS/AI/Office
documents. If not specified, it defaults to whatever is defined in the
VisualIntegrity.UseUnicode property in the local/user properties file. If it is specified, it
overrides the property value.

Note: To specify it on a per-file basis, the Media.load() accepts a useUnicode parameter for
those document types.

If true, it returns the text associated with the named object. The returned text is one long continuous
ASCII string of text, with linefeeds and all other characters.

If false, it returns ASCII.

226

MediaRich CORE 6.2 • Programmer's Guide

The default setting can be specified in the properties file:

VisualIntegrity.UseUnicode=true

To set this property, add this line to the local properties (or user properties) file and then restart
MediaRich.

Note: When Unicode text extraction is used, paged text extraction on Windows is not available
and only TextExtraction.getEntireText()will work. (Other class methods will return an
error.)Mac and Linux do not support paged text extract, so the issue is not relevant on those
platforms.

Syntax

<object name>.getEntireText();

Parameters

UseUnicode - An optional boolean parameter. If true, it returns Unicode text. If false, the text is
forced to ASCII. If this parameter is not present, the default is whatever the
VisualIntegrity.UseUnicode property is set to (which defaults to true). This parameter only affects the
text of PDF and AI files. Office files always return Unicode text, and EPS/PS files are always ASCII.

Example

var te = new TextExtraction("text-extraction.pdf");

var str = te.getEntireText();

var m = new Media();

m.makeCanvas(xs @ 1024, ys @ 768, fillcolor @ 0xffffff);

m.makeText(text @ str, font @ "Arial Unicode MS", style @ "Bold",

size @ 14, color @ 0x000000);

m.save(name @ "out.png");

getText()
The getText()method returns the text associated with the named object within a given page
range. It returns the text as one long continuous string of text, with linefeeds and all other
characters.

Important: This functions does not currently work with Office documents and is also disabled
for PDF/EPS/AI files when Unicodemode is turned on. (Unicode paged text extraction is
currently unsupported.)

Syntax

<object name>.getText(page1, pageN);

The TextResponse object needs to be constructed using the TextResponse() constructor.

227

CHAPTER 4 MediaScript Objects and Methods

Parameters

page1 is the first page, and (optional) pageN is the last page, from which getText extracts text.

Example

function main() {

var te = new TextExtraction(filePath);

var page2text = te.getText(2);

var page2to5text = te.getText(2, 5);

}

IccProfile Object

The IccProfile object is constructed using the IccProfile() constructor. It does not return a value.

Parameters

Profile - path to an ICC profile file, or a Media object with an embedded profile.

Note: The special profile names, rgb and cmyk may be used to denote the default RGB and
CYMK profiles specified in the global.properties file under the keys
ColorManager.DefaultRGBProfile and ColorManager.DefaultCMYKProfile,
respectively.

Example

The following example creates an IccProfile object using the USWebCoatedSWOP.icc profile:
#link "IccProfile.dll"

var prof = new IccProfile("USWebCoatedSWOP.icc");

var image = new Media();

image.load(name @ "fileWithEmbeddedProfile.jpg");

var prof2 = new IccProfile(image);

Note: For all paths in the IccProfile object that do not specify a file system, the default is the
color file system. See “File Systems” on page 39 for more information.

The list(colorspace, class) method is a static method of the IccProfile class.

The IccProfile object implements the following methods:

• close()
• getName()
• getPath()
• getClass()

228

MediaRich CORE 6.2 • Programmer's Guide

• getColorspace()
• getConnectionspace()

IccProfile.dll

Dynamic enumeration of color profiles is provided by the IccProfile link library. The library allows
clients to list profiles by colorspace and class or to query a specific ICC profile.

The following example returns text describing every available CMYK profile:
#link "IccProfile.dll"

#include "sys:/TextResponse.ms"

function main()

{

var txt = new TextResponse();

var profs = IccProfile.list(IccProfile.CMYK, IccProfile.UNKNOWN);

for (var i = 0; i < profs.length; ++i)

{

txt.append(profs[i] + "\n");

var currProf = new IccProfile(profs[i]);

txt.append(" name: " + currProf.getName() + "\n");

txt.append(" path: " + currProf.getPath() + "\n");

txt.append(" class: " + currProf.getClass() + "\n");

txt.append(" colorspace: " + currProf.getColorspace() + "\n");

txt.append(" connectionspace: " + currProf.getConnectionspace() + "\n");

currProf.close();

}

resp.setObject(txt, RespType.Streamed);

}

list(colorspace, class)
The list(colorspace, class) method is a static method of the IccProfile class that returns an array of ICC
profile files corresponding to the specified colorspace and class.

The colorspace argument must be one or more of the following predefined constants, bitwise OR-ed
(|) together:

• IccProfile.RGB
• IccProfile.CMYK
• IccProfile.LAB
• IccProfile.XYZ
• IccProfile.GRAY
• IccProfile.ALPHA
• IccProfile.PALETTE

229

CHAPTER 4 MediaScript Objects and Methods

• IccProfile.HLS
• IccProfile.HSV

The class argument must be one or more of the following predefined constants, bitwise OR-ed (|)
together:

• IccProfile.MONITOR
• IccProfile.SCANNER
• IccProfile.PRINTER
• IccProfile.LINK
• IccProfile.ABSTRACT
• IccProfile.COLORSPACE
• IccProfile.NAMEDCOLOR
• IccProfile.UNKNOWN

Parameters

colorspace -> Bitwise OR (|) of desired colorspace values.

class -> Bitwise OR (|) of desired profile class values.

Example

The following example returns an array containing all the ICC monitor and printer profiles for RGB
and CMYK colorspaces:
#link "IccProfile.mdv"

var profs = IccProfile.list(IccProfile.RGB | IccProfile.CMYK, IccProfile.MONITOR |
IccProfile.PRINTER);

close()
The close()method closes the profile file. It returns no value.

Parameters

This function takes no parameters.

Example

The following example creates an IccProfile object using the USWebCoatedSWOP.icc profile and then
closes the file:
#link "IccProfile.dll"

var prof = new IccProfile("USWebCoatedSWOP.icc");

prof.close();

230

MediaRich CORE 6.2 • Programmer's Guide

getName()
The getName()method returns the friendly display name of the profile.

Parameters

This function takes no parameters.

Example

The following example creates an IccProfile object using the USWebCoatedSWOP.icc profile and
retrieves the friendly name:
#link "IccProfile.dll"

var prof = new IccProfile("USWebCoatedSWOP.icc");

var name = prof.getName();

getPath()
The getPath()method returns the path of the profile file.

Parameters

This method has no parameters.

Example

The following example creates an IccProfile object using the USWebCoatedSWOP.icc profile and
retrieves the profile path:
#link "IccProfile.dll"

var prof = new IccProfile("USWebCoatedSWOP.icc");

var name = prof.getPath();

getClass()
The getClass()method returns the profile class.

Parameters

This method has no parameters.

Example

The following example creates an IccProfile object using the USWebCoatedSWOP.icc profile and tests
if it is a printer profile.
#link "IccProfile.dll"

var prof = new IccProfile("USWebCoatedSWOP.icc");

var isPrinter = prof.getClass() & IccProfile.PRINTER;

231

CHAPTER 4 MediaScript Objects and Methods

getColorspace()
The getColorspace()method returns the profile colorspace.

Parameters

This function takes no parameters.

Example

The following example creates an IccProfile object using the USWebCoatedSWOP.icc profile and tests
if it is a CMYK profile.
#link "IccProfile.dll"

var prof = new IccProfile("USWebCoatedSWOP.icc");

var isCmyk = prof.getColorspace() & IccProfle.CMYK;

getConnectionspace()
The getConnectionspace()method returns the IccProfile connection space as the jseNumber.

Parameters

This function takes no parameters.

Example

The following example creates an IccProfile object using the USWebCoatedSWOP.icc profile and
retrieves the connectionspace.
#link "IccProfile.dll"

var prof = new IccProfile("USWebCoatedSWOP.icc");

var connectionspace = prof.getConnectionspace();

Zip Object

The Zip object is used to create and add files to a new zip archive. The Zip object is constructed using
the Zip() constructor. This function takes no parameters.

Note: For all paths in the Zip object that do not specify a file system, the default is the write file
system. See “File Systems” on page 39 for more information.

This object implements the following methods:

• addFile()
• save()

232

MediaRich CORE 6.2 • Programmer's Guide

addFile()
The addFile()method adds a file to the zip archive.

Note: The file is not actually read until the save()method is called. For more information, see
“save()” on page 233.

Parameters

filePath - specifies the VFS path of file to add to archive.

archivePath - specifies a full path of file as stored in archive.

save()
The save()method creates a new zip archive and compresses all the files specified by calls to
addFile(). For more information, see “addFile()” on page 233.

Parameters

archiveName - specifies a path to new archive file

Example

var myZip = new Zip();

myZip.addFile("images/image1.jpg", "image1.jpg");

myZip.addFile("images/image2.jpg", "image2.jpg");

myZip.save("zip/files.zip");

The Zip object can also be used as a response object. For example, the following creates a zip archive
as a cached response:
var myZip = new Zip();

myZip.addFile("images/image1.jpg", "image1.jpg");

myZip.addFile("images/image2.jpg", "image2.jpg");

resp.setObject(myZip);

Unzip Object

The Unzip object is used to extract files from an existing zip archive and is constructed using the
Unzip() constructor. This function takes no parameters.

Note: For all paths in the UnZip Object that do not specify a file system, the default is the read
file system. See “File Systems” on page 39 for more information.

This object implements the following methods:

• close()
• extractAll()

233

CHAPTER 4 MediaScript Objects and Methods

• extractFile()
• firstFile()Method
• getFileName()
• nextFile()
• open()

close()
The close()method closes the archive file.

Parameters

This function takes no parameters.

Examples

var myZip = new Unzip();

myZip.open("zip/files.zip");

myZip.extractAll("files");

myZip.close();

The following example extracts each file individually:
var myZip = new Unzip();

myZip.open("zip/files.zip");

var filename = myZip.firstFile();

while (filename != null)

{

myZip.extractFile("files/" + filename);

filename = myZip.nextFile();

}

myZip.close();

extractAll()
The extractAll()method extracts all files in the zip archive to the specified directory. The full
paths stored in the archive are preserved in the destination directory.

Parameters

dir - specifies the VFS path of the directory to extract files.

extractFile()
The extractFile()method extracts the current file to the specified file.

Parameters

destFile - specifies the VFS path of the destination file.

234

MediaRich CORE 6.2 • Programmer's Guide

firstFile() Method
The firstFile()method resets file iterator to first file in archive. It returns a string with the name
of current file, or null if not found.

Parameters

This function takes no parameters.

getFileName()
The getFileName()method returns name of current file in the archive.

Parameters

This function takes no parameters.

nextFile()
The nextFile()method advances file iterator to next file in the archive. It returns a string with the
name of the current file, or null if not found.

Parameters

This function takes no parameters.

open()
The open()method opens an existing archive. The archive remains open until one of the following
occurs:

• Another archive is opened
• The archive is explicitly closed with the close()method
• The Unzip object is garbage collected

Parameters

archiveName - specifies the path to the existing archive file.

Emailer Object

The Emailer object is used to send email. After themessage is constructed usig object methods, the
object logs in to specified SMTP server using specified credentials and sends themessage. The
message is send as multi-part message and can contain plain text and HTML parts. Both parts are
encoded as 8-bit/UTF-8, so it is Unicode-safe.

To use this object, you have to load a library that implements it with this statement at the top of
your script:
#link <EMailer>

235

CHAPTER 4 MediaScript Objects and Methods

The Emailer object is constructed using the Emailer() constructor. This function takes no
parameters.

This object implements the following methods:

• addAttachment()
• addBccAddress()
• addCcAddress()
• addToAddress()
• send()
• setFromAddress()
• setMessage()
• setMessageHTML()
• setPassword()
• setServer()
• setSubject()
• setUsername()

addAttachment()
The addAttachment()method adds a file attachment to the email message.

Parameters

filePath - path to the file to be attached.

addBccAddress()
The addBccAddress()method adds an email address to the list of “BCC:” addressees.

Parameters

bccAddress - specifies the “BCC:” receipient email address(es).

addCcAddress()
The addCcAddress()method adds an email address to the list of “CC:” addressees.

Parameters

ccAddress - specifies the “CC:” receipient email address(es).

236

MediaRich CORE 6.2 • Programmer's Guide

addToAddress()
The addToAddress()method adds an email address to the list of “To:” addressees.

Parameters

toAddress - specifies the “To:” recipient email address(es).

send()
The send()method sends themessage.

Parameters

This function takes no parameters.

Example

#link <EMailer>

var msg = new EMailer();

msg.setServer("smtp.coolwidgets.com:26");

msg.setUsername("joe");

msg.setPassword("mysecretpassword");

msg.setFromAddress("joe@coolwidgets.com");

msg.addToAddress("jim@hotwidgets.com");

msg.setSubject("Our new widget is cool");

var link = “http://coolwidgets.com/newwidget.html”;

var bodyText = “Check out our new widget. It’s cool:\n”;

bodyText += link + “\n\n”;

msg.setMessage(bodyText);

var bodyHTML = “<html><head><title>Cool New Widget</title></head>”;

bodyHTML += “<body><table><tr><td>\n”;

bodyHTML += “Our new widget\n";

bodyHTML += "</td></tr></table></body></html>\n";

msg.setMessageHTML(bodyHTML);

msg.send();

setFromAddress()
The setFromAddress()method sets the “From:” header in themessage.

Parameters

fromAddress - specifies the sender email address (such as username@hostname.net).

237

CHAPTER 4 MediaScript Objects and Methods

setMessage()
Sets plain text part of themessage.

Parameters

plainText - specifies the plain text part of the email body.

Example

#link <EMailer>

var msg = new EMailer();

...

msg.setMessage(bodyText);

var bodyHTML = “<html><head><title>Important Message</title></head>”;

bodyHTML += “<body><table><tr><td>\n”;

bodyHTML += “Policy Update\n";

bodyHTML += "</td></tr></table></body></html>\n";

msg.setMessageHTML(bodyHTML);

....

setMessageHTML()
Set HTML part of themessage.

Parameters

htmlText - HTML part of the email body.

Example

#link <EMailer>

var msg = new EMailer();

...

msg.setMessage(bodyText);

var bodyHTML = “<html><head><title>Cool New Widget</title></head>”;

bodyHTML += “<body><table><tr><td>\n”;

bodyHTML += “Our new widget\n";

bodyHTML += "</td></tr></table></body></html>\n";

msg.setMessageHTML(bodyHTML);

....

238

MediaRich CORE 6.2 • Programmer's Guide

setPassword()
If the server requires authentication, log in using specified password.

Parameters

password - specifies the login password for SMTP server.

Example

#link <EMailer>

var msg = new EMailer();

...

msg.setPassword("mysecretpassword");

....

setServer()
Tells the object to use specified server for sending email.

Parameters

serverNameOrIP - DNS name or IP address of the SMTP server.

Example

#link <EMailer>

var msg = new EMailer();

...

msg.setServer("smtp.coolwidgets.com:26");

....

setSubject()
Sets the “Subject:” line of the email message.

Parameters

subject - specifies the email subject text.

Example

#link <EMailer>

var msg = new EMailer();

...

msg.setSubject("Read this message");

....

239

CHAPTER 4 MediaScript Objects and Methods

setUsername()
If the server requires authentication, log in using specified username.

Parameters

username - login user name for SMTP server.

Example

#link <EMailer>

var msg = new EMailer();

...

msg.setUsername("JaneDoe");

....

Cubic Object (2D Interpolator)

Given two arrays, one containing X values and the other containing Y values, the Cubic object
constructs a cubic spline between the supplied points and then lets you map X values to Y values
anywhere on the spline.

This object supports the following constructor and method.

Constructor

The Cubic(numPoints, Xvalues, Yvalues) constructor takes two arrays: X values and Y
values and constructs cubic spline between the supplied points.

Method

The getValue(x)method maps X value to Y value on the spline.

Example

var xValues2 = [0, .2, .5, .8, 1];

var yValues2 = [0, .1, .5, .9, 1]; // slow start/end

var cubic2 = new Cubic(5, xValues2, yValues2);

// animate a 20 step move in a full circle, with an ease in/out

// using that curve

for (i = 0 ; i <= 1 ; i += .05)

angle = 360 * cubic2.getValue(i);

240

MediaRich CORE 6.2 • Programmer's Guide

The RgbColor Object

The RgbColor object is constructed from a 24-bit value. It splits the color into red, green, and blue
components.

This object supports the following constructor, properties, methods, and static functions.

Constructor

The RgbColor(value) constructor returns an RgbColor object constructed from value.

Properties

red - the red component (read or write). Valid values range from 0 to 255.

green - the green component (read or write). Valid values range from 0 to 255.

blue - the blue component (read or write). Valid values range from 0 to 255.

Methods

The valueOf()method converts the red, green, and blue components back to a 24-bit value.

The toString()method returns string representation of 24-bit value.

Static functions

The RgbColorFromRGB(red, green, blue) function constructs RgbColor from the
components.

The RgbColorFromPct(red, green, blue) function constructs RgbColor from component
percentages (0-1).

Examples

#include "Sys/color.ms"

myColor = new RgbColor(0x1133aa);

print (myColor.red, myColor.green, myColor.blue);

myColor = new RgbColor();

myColor.red = 27;

myColor.green = 59;

myColor.blue = 255;

media = new Media();

media.makeCanvas(xs @ 100, ys @ 100, fillcolor @ myColor);

241

CHAPTER 4 MediaScript Objects and Methods

The CmykColor Object

The CmykColor object is constructed from a 32-bit value. It splits the color into cyan, magenta,
yellow, and black components.

This object supports the following constructor, properties, methods, and static functions.

Constructor

The CmykColor(value) constructor returns a CmykColor object constructed from value.

Properties

cyan - the cyan component (read or write). Valid values range from 0 to 255.

magenta - themagenta component (read or write). Valid values range from 0 to 255.

yellow - the yellow component (read or write). Valid values range from 0 to 255.

black - the black component (read or write). Valid values range from 0 to 255.

Methods

valueOf() - converts the cyan, magenta, yellow, and black components back to a 32-bit value.

toString() - returns string representation of 32-bit value.

Static functions

CmykColorFromCMYK(cyan, magenta, yellow, black) - constructs CmykColor from the
components.

CmykColorFromPct(cyan, magenta, yellow, black) - constructs CmykColor from
component percentages (0-1).

Examples

#include "Sys/color.ms"

myColor = new CmykColor();

myColor.cyan = 27;

myColor.yellow = 122;

myColor.magenta = 115;

myColor.black = 55;

media = new Media();

media.makeCanvas(xs @ 100, ys @ 100, fillcolor @ myColor);

242

MediaRich CORE 6.2 • Programmer's Guide

The AWS Object

Instead of adding the newmethods to an existing object, an entirely new host object was created,
the AWS Object.

In order for the generated URLs to be valid in AWS, the user must place a plain text file named
"credentials" (no quotes and no file extension) in a folder named .aws which should be created in the
user hive folder of the user MediaRich is running as. (Create the folder with mkdir in a command line;
theWindows Explorer environment won’t allow the creation of a folder with a leading period in the
name.) If it is LocalSystem, it will be in theWindows/System32/config/systemprofile directory. If
MediaRich is running as a different user, their hive folder is commonly found under
C:\Users\<mediarichuseraccountname>. A credentials files looks like this…
[default]

aws_access_key_id =

aws_secret_access_key =

…where the values for the access and secret keys follow each equal sign and are determined when an
IAM user on AWS is created. Alternatively, two environment variables, AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY, can also have the values assigned to them for use in MediaRich. Refer
to the AWS documentation for all details of access keys and secret keys.

Adding environment variables on Windows 10:

Control panel - System and Security - System - Advanced system settings - Environment Variables... -
System variables - New...

To check if your MediaRich runs as Local System:

Control panel - System and Security - Administrative Tools - Services

Note: In Task Manager - Details, it will show as "SYSTEM"

These credentials must be configured before you generate the URLs. If the URLs are generated before
the access and secret is defined, the URLs will not be valid when used with MediaRich I/O operations
on AWS (available through Media.load() and Media.save()).

Once this is done, the user must add #link "AWS.mdv" to their script to make use of the following
newmethods:
AWS.createS3GetURL(RemotePath, TimeToLive, Bucket, Region)

243

CHAPTER 4 MediaScript Objects and Methods

Create a limited-time S3 URL for use with Media.load() or other read operations in MediaRich. This
method does no actual I/O - it only generates a URL. If the information input here is not correct, the
read operation will fail. Note that you must specify your AWS IAM user's access key and secret
elsewhere (it is insecure to have these values as plain text in your MediaScript). Please see the docs
for the locations of where these keys will be searched.

Params

string RemotePath - The path and/or filename for the remote file that is desired to be saved and
uploaded to the S3 storage. Do not include the bucket in the path - it is a separate parameter. If
subdirectories are included and don't exist on S3 they will be automatically created.

int TimeToLive - The number of seconds the URL will be considered valid by the remote S3 server,
measured in seconds. This time-to-live starts counting down from themoment the URL is created by
this method, so leave enough time for any other script processing occurring after this call as well as
the write operation itself to complete when choosing a value. As of this writing, AWS limits this value
to a maximum of 7 days, so specifying values larger than 604,800 seconds will be of no use.

string Bucket - Specify the bucket to access. This parameter is optional; if it is left off the bucket
will be read from local.properties. If it isn't present there and isn't included as a param, an error will
occur.

string Region - Indicate the geographical region of the S3 server this URL with be used with. This
parameter is optional; if it is left off the region info will be read from local.properties. If it isn't present
there in this situation, an error will occur.

The names of the keys for the global bucket and region values in local.properties are AWS.S3.Bucket
and AWS.Region, respectively. (They are case-sensitive as all MediaRich properties are.)

Returns a string containing the generated URL. If an error occurs while trying to generate it the URL
may be invalid or empty.
-------------EXAMPLE HOT FOLDER SCRIPT: START-------------

// HF_ERROR_MAILLIST =

// HF_RESULTS_MAILLIST =

// HF_DELETE_ORIGINALS = false

/*

INTENT: Read from and write to AWS. The read portion is just one image that will be
composited over all images dropped.

NOTES:

BatchID ^Processed subfolders will still be created locally, but not in the ^Results
folder. The Batch ID folder will be created in the AWS location, and will contain the
processed images.

Any .errors files will appear in local ^Results subfolders; they do not appear at the
AWS location.

As written, this MediaScript does not reproduce the original folder if a folder of
images is dropped: it writes only the individual images to the AWS location inside
the BatchID folder.

244

MediaRich CORE 6.2 • Programmer's Guide

If the image filename and the folder's BatchID name are duplicated by this script,
the original image will be overwritten.

*/

// REQUIRED for AWS S3 operations

#link "AWS.mdv"

function hf_file(context)

{

// Create a secure URL to a brush image on AWS.

var gUrl = AWS.createS3GetURL("32bitcomposnblur.png", 130, "test.equilibrium.com",
"us-west-1");

// Load the source image using loadAsRgb() to match the RGB

// data in the brush image and thus avoid errors.

var image = new Media();

image.loadAsRgb(name @ context.getSourcePath());

// Load the brush image.

var brush = new Media();

brush.load(name @ gUrl);

// Composite brush over each incoming image.

image.composite(source @ brush);

// Get the name (minus extension) of each image.

var sourcePath = context.getSourcePath();

var f = new File(sourcePath);

var fn = f.getFileNameNoExt();

// Stitch together the path, name & extension to be saved.

var outPath = "output" + "/" + context.getBatchId() + "/" + fn + ".jpg";

// Create a secure URL for each image to be saved to AWS.

var pUrl = AWS.createS3PutURL(outPath, 30, "test.equilibrium.com", "us-west-1");

// Save the result to the PerBatch output directory, with the

// result named the same as the source file, saved as a JPEG.

image.save(name @ pUrl);

}

function hf_post(context)

{

context.setDeleteOriginals(context.getParameter("HF_DELETE_ORIGINALS") == "true");

}

--------------EXAMPLE HOT FOLDER SCRIPT: END--------------

245

CHAPTER 4 MediaScript Objects and Methods

The Azure Object

MediaScript:

In order to use the Azure object, add the following line to your MediaScript:
#link "Azure.mdv"

Configuration:

Additionally, you will need to create a local.properties_Azurewith the following key
Azure.ConnectionString= present. The value for ConnectionString can be found in the Azure
Storage Dashboard Access Keys tab under "Connection String". Either connection string can be used.

While it is a best practice to put this value in a separate file that can be secured, it will also work if you
place this key-value pair in local.properties or local.properties_user.

If you prefer, you can manually break apart the connection string at the semicolons and place each
value individually in the file, with "Azure." preceeding each key. (E.g.,
Azure.DefaultEndpointsProtocol, Azure.AccountName, Azure.AccountKey, and
Azure.EndpointSuffix.)

Overview:

There are two ways to generate Azure SAS Blob Account URLS:
Azure.createBlobAccountSASFullURL() and Azure.createBlobAccountSASQueryURL
(). Blob service URLs cannot be generated at this time.

The difference between the two calls is the first generates a single-file fully-qualified URL while the
second generates only the query string component which can be used with multiple files in the same
storage account.

Methods:

string Azure.createBlobAccountSASFullURL(string RemotePath, int TimeToLive,
string Permissions)

RemotePath - The path to the file on the Azure remote server. This should not include the endpoint
(i.e., https://xxxxx.blob.core.windows.net) since that will be acquired from the connection string
local properties.

TimeToLive - The number of seconds the URL will be considered valid by the remote Azure server,
measured in seconds. This time-to-live starts counting down from themoment the URL is created by
this method, so leave enough time for any other script processing occurring after this call as well as
the I/O operation itself to complete when choosing a value.

Permissions - A string with the characters indication which kind of operations will be allowed with
this URL. Currently only "r", "w", and "rw" are supported. In the last case this allows the URL to be
used for both Media.load() and Media.save() with the specified file.

Themethod returns a fully-qualified URL with the remote path inserted into the URL.
string Azure.createBlobAccountSASQueryString(int TimeToLive, string Permissions)

246

MediaRich CORE 6.2 • Programmer's Guide

TimeToLive - The number of seconds the URL will be considered valid by the remote Azure server,
measured in seconds. This time-to-live starts counting down from themoment the URL is created by
this method, so leave enough time for any other script processing occurring after this call as well as
the I/O operation itself to complete when choosing a value.

Permissions - A string with the characters indication which kind of operations will be allowed with
this URL. Currently only "r", "w", and "rw" are supported. In the last case this allows the URL to be
used for both Media.load() and Media.save() operations.

Themethod returns a query string that is suitable for appending to the end of a storage endpoint
plus the path to the remote file.
string Azure.getEndPoint()

This method returns the cloud storage endpoint stored in the Connection String properties
described at the top of this section of docs as a URL.

See the Azure.createBlobAccountSASQueryString() example to see how you can use it in
your code.

Examples:

Example of loading and saving over the same file, then saving to a new file:
#link "Azure.mdv"

var url = Azure.createBlobAccountSASFullURL("testing/myfile.png", 900, "rw");

m.load(name @ url, detect @ true);

m.save(name @ url);

url = Azure.createBlobAccountSASFullURL("newfile.png", 900, "w");

m.save(name @ url);

Example of loading and saving saving to a new file:

#link "Azure.mdv"

var query = Azure.createBlobAccountSASQueryString(900, "rw");

var endPoint = Azure.getEndPoint();

m.load(name @ endPoint + "/testing/infile.png" + query, detect @ true);

m.save(name @ endPoint + "/testing/out.png" + query);

247

CHAPTER 5

MediaRich CORE Audio/Video 2

248

With the release ofMediaRich CORE 4.0, AVCore 2 is the replacement for AVCore 1. Whereas
AVCore 1 was written to emulate and expose the QuickTime API to MediaScript users, AVCore 2 is
redesigned from the ground up to focus on high-speed transcoding with auto-assembly. Like
AVCore 1, it works through MediaScript; however, the API is more similar to the AVCore 1 high-level
API than to a low-level media SDK.

TheMediaRich Audio/Video capabilities are exposed as MediaScript API, a library ofMediaScript
objects that extend the base capabilities ofMediaRich. This chapter describes the use of that API.

MediaRich A/V capabilities are built into MediaRich, but are not enabled by default. To use the
MediaRich A/V features in MediaRich, you must install a MediaRich license file (license.bin) that
enables those features. A/V COREMulti-threaded video processing functionality is an option, as well
as GPU-accelerated processing using Intel Quicksync on SandyBridge and later processors. Standard
MediaRich evaluation and production licenses do not enable A/V functionality unless requested.
Contact an Equilibrium Sales Representative to obtain a license that enables the A/V features. Use
theMediaRich CORE Administration utility to install any license file you receive from Equilibrium.

Chapter summary

“MediaRich AVCore 2” on page 249

“Basic AV Transcoding” on page 253

“Using AV Settings Files” on page 255

“AVCore 2 Callbacks” on page 262

“Working with AVClips” on page 264

“AVCore 2Metadata” on page 265

“AVCore 2 Best Practices ” on page 266

MediaRich CORE 6.2 • Programmer's Guide

MediaRich AVCore 2

MediaRich CORE 4.0 includes the AVCore 2 engine to power audio and video handling. It has been
completely re-written as a 64-bit engine that allows it to take advantage of GPU acceleration and the
ability to process large files, including 4K and 8k video.

AVCore 2 includes a broad range of functionality for automated audio/video processing:

• It reads all audio video formats supported by AVCore 1, EXCEPT FLI, FLC or any video containing
paletted data.

• It writes most formats supported by AVCore 1 , plus native Flash Video, Ogg Theora, GXF, MTS,
and VPX/webm.

• It is capable of auto-assembling several inputs with advanced normalization to make them all fit
into a single output format.

• It provides a plug-in system for accessing “handlers”, which implement the low-level transcoding
and processing functions for various media APIs.

• It provides a scalable growth path for the addition of GPU accelerators and other third-party
encoder/decoders.

Optimized transcoding

While there are other utilities available that are capable of concatenating video and audio, they
usually put strict limitations on the type of output container file and do not normalize the inputs,
creating a “Franken-file" that consists of segments that run at different frame rates, contain variable
video and audio formats, and are not capable of combining elements into a single frame. The AVCore
2 patented and patent pending technology is capable of doing all of this, while providing a fast
transcoding environment during this process with the ability to modify each frame as it is output and
encoded.

High-level APIs

With the use of handlers, developers do not need to learn low-level APIs because the built-in high-
level API provides the abstraction and standardizes all functionality so a script using one handler will
work with another handler. When a file is read, decoding handlers are selected by AVCore 2
depending on the file formats and codecs they support, and encoding handlers are specified by the
user when they create a settings file to export video or audio to a particular file format and codec.

249

CHAPTER 5 MediaRich CORE Audio/Video 2

AVCore 2 Concepts
AVCore 2 is built on classes that provide the ability to read from file containers and then transcode
themedia contained in those files into new files, optionally appending and mixing them with other
assets along the way. Here is a brief listing of constructs used in AVCore 2 to provide this reading and
transcoding ability:

AVContainers

AVContainers provide access to the file being decoded, and can return information, such as the
number and types of tracks the file contains and global metadata. Currently, they are read-only, so
you cannot modify their data in-place. The only way to change the information inside a file is to
export it to a new file and change the data as it is exported.

AVClips

AVClips provide access to the video and audio tracks inside the files. They are responsible for
returning frames of video and chunks of audio as well as any track-specific metadata. AVClips can be
the length of the entire track or can be a subrange of video or audio in a particular track.

VideoStills

VideoStills are a special kind of container in that they do not contain a file but contain the contents of
a Media object along with an unlimited amount of audio silence. These are used to insert title cards
into videos and generate silence for inputs that lack audio. The duration of the still or audio silence is
determined when the AVClip is created from their AVContainer.

AVProcesses

AVProcesses are the transcoding engines. They are given an output file and settings file to use to
determine the output format and the AVClips are added to them, which tells the exporter how to
auto-assemble the final video or audio file. When all of the clips to be assembled are added, a single
API call is used to begin transcoding. There are also optional callback capabilities in case effects,
transitions, logos or other changes are needed to be applied as the frames are exported by the user.

AVRasters

AVRasters provide high-speed, abstract access to the decoder and encoder video frames. They
currently cannot bemanipulated directly except that they can be turned into MediaRich Media
objects and back again. When they areMedia objects, the user can use any ofMediaRich's Media
object functions to affect the look of the video frame before it goes out to the exporter, or the
frames can be saved as still images or GIF animations.

AVAudioData

AVAudioData objects provide a pipeline for audio to pass from the decoder to the encoder. Currently
they cannot be operated on, however future releases of AVCore 2will provide the ability to adjust
volume and mix audio.

250

MediaRich CORE 6.2 • Programmer's Guide

Primary clips

The primary clip is the one that determines how other clips are conformed when they are exported
into a single output video or audio file. While the settings file can potentially determine all of the
formatting information for an output file, many settings files will bemissing some information or use
aspect ratio correction modes that require knowledge of the input. Because theremay be several
inputs, the notion of a “primary” input clip or input timewas created so the information is from a
single, most-important source.

Settings files

The settings files in AVCore 1 consisted of Quicktime atom containers or Windows Media .prx files. In
AVCore 2, they are all text-based JSON files and the parameters in the settings files aremostly
standardized across handlers (this enables easy programmatic changes, or simple editing manually).
So "bitrate" for one handler means the same thing for another. It is possible to hand edit these
files in a text editor if they need to be tweaked without having to recreate them in the settings
generator.

AVCore 2 does not understand AVCore 1 settings files, so any custom settings you have created for
the previous version must be recreated for AVCore 2. Most of the settings file that shipped with
previous versions ofMediaRich have already been recreated for AVCore 2.

Aspect ratio correction

In AVCore 1, aspect ratio correction was something that had to be done by the frame callback using
Media.scale()with the "constrain" parameter set to true. In AVCore 2, aspect ratio correction
happens automatically when the decoder's AVRaster is copied and converted into the encoder's
AVRaster. The type of aspect ratio correction is determined by a parameter in the settings file.

See “Aspect Ratio Correction Modes” on page 258 to get a better understanding on how these work.

Normal and basic track assembly

In addition to an output track being either video or audio, a track can also be one of normal
assembly or basic assembly. Normal assembly tracks are created when the first call to
AVProcess.addClip() is done on that track. These tracks allow for overlapped clips where a
frame callback could composite all of the frames occurring at that point in time in the output video
into a single output frame. Basic assembly tracks, on the other hand, cannot overlap; one frame
from one clip is passed into the callback at a time. These type of tracks are created when the first clip
added to a track is added with AVProcess.addBasicClip().

There is slightly less overhead in handling basic assembly tracks, but the primary reason they exist is
to allow users that are already familiar with the AVCore 1 callbacks (which only allowed for one input
frame to be processed without using tricks) to work in a similar workspace.

Note: It is possible to create a normal assembly track with no clips that overlap; however the
track will still be treated as a normal assembly track internally. It is not possible to mix these

251

CHAPTER 5 MediaRich CORE Audio/Video 2

track types; once a track is defined as normal only AVProcess.addClip() can be used on it,
and once a track is defined as basic only AVProcess.addBasicClip() can be used on it.

AVCore API documentation
You will also find the full programmer A/V Core 2.0 API located in theMediaRich Server APIs.
Additionally, all of the product demonstrations have a link to the API location.

Along with these resources, “AVCore 2 Best Practices ” on page 266 provides useful information
about working with the newA/V Core 2.0.

Compatibility Scripts for AVCore 1
MediaRich CORE ships with a compatibility layer to allow transcoding with existing scripts that relied
on that feature in AVCore 1. The compatibility script replaces QuicktimeMovie.ms and provides
most of the functionality of the old file, but it uses AVCore 2 and AVCore 2 settings files. If you do not
require a frame callback to modify each frame as it is transcoded, it will run at full AVCore 2 speed. If a
frame callback is required, you cannot take full advantage of the AVCore 2 speed because every
framemust be converted into a Media object in order to remain compatible with
QuicktimeMovie.ms. For more information about coding an optimal frame callback directly to
AVCore 2, see “AVCore 2 Best Practices ” on page 266.

ExportMovie.ms and VideoStill.ms are also replaced with AVCore 2 counterparts. The
SceneDetectFast.ms script has not changed because it uses QuicktimeMovie.ms as an
interface to AVCore 1 instead of using AVCore 1 directly, so it will work the same as before.

If you have an existing script that uses AVCore 1 low-level API calls, these will not work with AVCore 2.
You must change them over to the AVCore 2 counterparts, if possible. Themost likely calls are for
retrieving video and audio metadata, as there was no high-level API in AVCore 1 for this purpose.
AVCore 2 provides its own metadata API for enumerating, reading, and exporting metadata. For
additional information, refer to the AVCore 2 API docs on theMediaRish server and to the
MetadataDemo.ms script in the AVCore 2 Examples folder.

If you must use AVCore 1 for your project, the original scripts are renamed to “QuicktimeMovie_
Legacy.ms”, “ExportMovie_Legacy.ms”, and “VideoStill_Legacy.ms”. These scripts still
use the AVCore 1 API; however, AVCore 1 is only available with 32-bit versions ofMediaRich and not
the now-standard 64-bit version.

252

MediaRich CORE 6.2 • Programmer's Guide

Basic AV Transcoding

The following sections provide a simple example of transcoding two input files into a single output
video. There is no error handling and the inputs and settings are presumed to be simple files located
in the MediaRichCore/Shared/Originals/Media folder. Both of these files contain at least one
video and audio track that run the entire length of the file.

Opening the Inputs
The first thing to do is open the files. The AVContainer object is used for this purpose:
var file1 = AVContainer(“advertisement.mov”);

var file2 = AVContainer(“MyMovie.mp4”);

It is NOT necessary for the containers to be the same file format; inputs can be just about any type of
source. Next, we need to get at the video and audio tracks in each file:
var vclip1 = AVClip(file1, AVClip.kTrackTypeVideo, 1, 5);

var aclip1 = AVClip(file1, AVClip.kTrackTypeAudio, 1, 5);

var vclip2 = AVClip(file1, AVClip.kTrackTypeVideo);

var aclip2 = AVClip(file1, AVClip.kTrackTypeAudio);

Here we get access to a part of the first file's audio and video track and make it a clip (starting from
one second in and lasting for five seconds), and for the second file we use the entire contents of its
audio and video tracks. It does not matter what order we gain access to the tracks; we could have
made the clips from file 2 first and then file 1. Remember these clips are abstractions; we aren't
creating anything on the hard drive, only gaining access to the tracks within so we can grab info like
video frames and audio samples.

Creating the Transcoding Processor
After opening the input files, create a processing object that will do the transcoding:
var processor = AVProcess(“NewVideo.*”, “MySettings.json”);

This creates an output file named NewVideo upon execution of the transcoding process, using a
settings file named MySettings.json.

The asterisk following the output filename causes the exporter to generate a proper filename
extension based on the file format specified in the settings file. If you do not use an asterisk following
the last “.”, the auto-extension feature is not activated and the filenamewill be exactly what is
specified. For example, if the “MySettings.json” file specified an output ofMP4, the final
filename is “NewVideo.mp4”.

Note: If you need the final output filename before you exit your script, you can call
AVProcesses.getOutputPath() after the transcode is complete to get that information.

253

CHAPTER 5 MediaRich CORE Audio/Video 2

Adding the Clips
After creating the transcoding processor, add the clips opened by the transcoding process to the
processor:
processor.addClip(vclip1);

processor.addClip(vclip2);

processor.addClip(vclip1);

processor.addClip(aclip1);

processor.addClip(aclip2);

processor.addClip(aclip1);

The processor adds clips to matching tracks specified in the settings file, and if an appropriate track
does not yet exist yet, it adds one. Because no starting timewas specified in the addClip() call, all
of these clips are appended to one another in their appropriate tracks. The following diagram
illustrates how the output video is laid out when the transcoding is executed:

The track order is determined by the settings file; it would have been okay to add the audio clips first
and then the video clips. The audio clips would have still been mapped to track 1 since that is how
the output was laid out in the settings. If your settings specifies multiple audio or video tracks, there
is a parameter you pass to addClip() (and addBasicClip()) to cause all subsequent clips to be
added to the next matching track. (Refer to the API documentation.) It is also OK to have a settings
file that specifies a particular track type and not add any of that kind of track. You will simply get an
output file that only has a track with the type of clips that were added (audio or video).

Also notice that the first clip was added twice; it is totally permissible to add the same clips to an
output more than once. The addClip() function returns the track number that was assigned to the
added clips. This value can be used to adjust settings programmatically or extract information from
the output track. (Refer to the AVCore 2 API documentation for more information.)

The basic example does not include any error checking and does not modify any of the settings, so it
discards the returned track numbers.

Executing the Transcoding Process
Start the transcoding process with the following:
processor.execute();

The function will return when it is finished and the new output video is created in the specified path.
If an error occurs during transcoding, the processor is invalidated and you must reinitialize it again
with a fresh instance.

254

MediaRich CORE 6.2 • Programmer's Guide

Error handling

All AVCore 2 errors throw exceptions (this is also the case with AVCore 1). So for normal error
handling, you might need to add your code, test, and catch blocks. Uncaught errors will terminate
the script and are logged to the Scripterrors.log file. If the script is run from an MRL, the web
browser will also display the error message if it is not caught and handled.

Using AV Settings Files

AVCore 2 provides a built-in settings generator, which is a web-based interface built into MediaRich.
This can be used simply as a way to create settings JSON files or it can be used as a user experience
element in your own interfaces. With this utility, you can choose the handler, file format, codec, and
various codec settings for each video and audio track you wish to export. For video tracks, you also
specify how input media is reformatted to the output format, and whether aspect ratio correction
should be applied, padding, and how additional assets auto-assembled into an exported video are
conformed to the primary asset.

You can save these generated files as presets, or you can use existing presets located in the
HotFolders default public access folder. Several compression setting files, as well as a PDF of settings,
for popular formats are located in sample imaging examples area and the A/V Settings generation
page here: http://localhost/mrm/AVCoreSettingsMaker/index.html.

You can also download these files, but they must bemade available to theMediaRich server. You can
do this in the sameway that you make any source asset available to MediaRich. For more
information on where to place and how to access source asset files, see “File Systems” on page 39.

Accessing the AV Settings Utility
You can access the AV Settings utility from a browser using a standard URL:
http://<localhost or host IP>/avsettingsmaker/

Note: A 403 or 403.1 error can occur when trying to access this URL when logged onto the
server itself. If so, your administrator must use IIS Manager to make changes to the
avsettingsmaker permissions. This can typically be resolved by editing the Handler Mappings
for Scripts to enable handlers that require script rights.

255

CHAPTER 5 MediaRich CORE Audio/Video 2

Creating a Settings File
The AV Settings utility generates text-based JSON files. The specified parameters in these files are
standardized, for themost part, across handlers to enable easy programmatic changes, or simple
manual editing in a text editor. For example, “bitrate” for one handler means the same thing for
another.

This utility supports two file handlers:

• FFMpeg-based Decoding/Encoding - Use this file handler to do most audio-video tasks quickly
and easily, including audio compression, audio/video format conversion, and image extraction. It
handles both new and old video formats.

• Intel QuickSync-based hardware accelerated encoding - This file handler is designed for
performance. If you need to do significant video transcoding with MediaRich, you should
investigate getting hardware that has this capability so that MediaRich can take advantage of it.
This produces a 2-6x performance boost over software encoding, depending on the size of the
output frame (better performance for higher definition outputs, such as 720P and 1080P).

To create a settings files:

1. Open AV Settings utility.

2. Select theOutput Template.

256

MediaRich CORE 6.2 • Programmer's Guide

3. Select the File Handler.

4. Select the File Format.

5. On the Video tab, select the Codec used for video (choose any).

Depending on the selected codec, you can specify how the input media is reformatted to the
output format, and whether aspect ratio correction should be applied, padding, and how
additional assets auto-assembled into an exported video are conformed to the primary asset.

Frame Rate: This is a standard parameter, but the default value will differ depending on the
codec. The (Use automatic values) option is selected by default, but you can clear the check box
and use the Suggestions... menu to choose another value.

Frame Dimensions: This is a standard parameter, but the default values will differ depending on
the codec. The (Use automatic values) option is selected by default, but you can clear the check
box and set each option as needed.

6. Click the Audio tab and select the Codec used for each audio track (choose any).

Some file format/video selections do not support a specific audio codec, or might support only
one.

257

CHAPTER 5 MediaRich CORE Audio/Video 2

Click Add Track to add an additional track and set the codec and parameters.

7. Save the file as a Preset or a Download.

If you choose to save the file as a preset, you must enter a name for the preset file and click OK.

If you choose to download the file, your web browser download handles downloading and
saving the file on your local system. To use the file, you will need to move the file to a folder
accessible by your MediaScript on theMediaRich server.

Aspect Ratio Correction Modes
AVCore 2 provides fast, internal aspect ratio correction and normalization for video frames as they
are passed from the source to the destination output frame. The aspect ratio correction mode is
specified in the settings file, and can be configured by the AVCore 2 settings generator
(http://localhost/avsettingsmaker). In the settings for the output file, you can specify the
aspect ratio correction mode for each video track.

There are several aspect ratio correction modes. The following sections describe thesemodes and
some include some diagrams to help illustrate and explain the results that they produce.

258

MediaRich CORE 6.2 • Programmer's Guide

None

Specify None to disable aspect ratio correction. If both a width and height is specified in the settings
file (or the output dimensions take on the size of the primary clip) the source frames are scaled to
those dimensions, and stretched or squashed as needed without any regard to maintaining the
original frame's aspect ratio. This will be true for all clips in the output video.

For example, if the primary clip is 1920×1080 and the second clip is 320×240 and there is no width or
height specified in the settings, the second clip is scaled up to 1920×1080 (because the output takes
on the size of the primary in this case) and is stretched.

Boxed In/All Boxed In

Use the Boxed In aspect ratio correction mode as the primary mode for transcoding wher possible.
The width and height define a maximum bounding box size for the output video – anything larger
than that is scaled down to fit inside the output dimensions with the aspect ratio kept intact. The
primary video clip is left unscaled if it fits inside the box. This allows for themost efficient encoding
size, since upscaling low-resolution videos doesn't improve quality and wastes bandwidth.

What is upscaled, however, are any non-primary clips. Because the output dimensions must remain
constant (for many file formats, anyway), these secondary clips must conform to the primary clip
format. So secondary clips are scaled to conform and padded as needed to fill out the frame to
match that of the primary clip dimensions (using Pad Best Fit mode).

All Boxed In is the same as Boxed In, except it uses Pad Boxed In instead of Pad Best Fit for the
secondary clips.

259

CHAPTER 5 MediaRich CORE Audio/Video 2

Pad Boxed In - Aspect Ratio Correction Mode

Pad Boxed In is similar to Boxed In, except primary clips that are smaller than the output dimensions
have the extra space padded to fill the frame out to those dimensions.

Also, if the primary clip is larger than the bounding box and is not the same aspect ratio as the
bounding box, the primary clip is downscaled and padded to fill out the space to meet the bounding
box dimensions and aspect ratio. All other clips in the sequence are also treated this way.

260

MediaRich CORE 6.2 • Programmer's Guide

Pad Best Fit - Aspect Ratio Correction Mode

All clips are scaled up or down to fit inside the output frame dimensions, and if their aspect ratio is
not the same as the output dimensions, padding is added to fill out the frame to those dimensions.

261

CHAPTER 5 MediaRich CORE Audio/Video 2

Best Fit - Aspect Ratio Correction Mode

The primary clip is scaled up or down to fit inside the output frame dimensions. No padding is added
to this clip. All other clips are also scaled up or down but they are also padded so their sizes match
that of the primary clip's new size.

AVCore 2 Callbacks

Each track in an output video is assigned a callback to handle the passing of video and audio to the
output file. By default, AVCORE 2 uses an internal one written in C++ if one is not assigned to a track
before AVProcess.execute() is called. This internal one is the fastest way to transcode videos,
but provides no customization of the output.

If you need to operate on each frame of video, you can assign a custom callback instead of the
internal default. The callback is a MediaScript function, similar to in AVCore 1. However, the
parameters are different and, depending on the type of track assembly (normal or basic), there is a
different callback for each type. Refer to the AVCore 2 API reference for the details on the callback
parameters and required return values.

Note: Because AVAudioData has no operations, audio callbacks are of limited use at this time.

The following is a simple example that adds a callback that duplicates the functionality of the internal
default video track callback for normal assembly:
function videoCallback(clips, outputInfo, destRast, &userData)

{

var srcRast = clips[0].clip.getVideoFrame(clips[0].reqTime, clips[0].duration);

262

MediaRich CORE 6.2 • Programmer's Guide

if (srcRast)

{

destRast.convertFrom(srcRast);

return true;

}

return false;

}

This callback looks at the first clip in the stack of available clips at that particular time position in the
output video and grabs a frame at the requested time from that clip. The AVCore 2 processor
automatically calculates the correct requested time for each clip that needs processing and passes it
as a member of the array entry for that clip. This is what the code that reads “clips[0].reqTime” is
doing – it is using the calculated requested time and telling that AVClip to get a frame from that time
position. The “clips[0].duration” is a return value. AVClip.getVideoFrame() returns the
frame's duration in the second parameter and we are storing it back in the clip array under the
required member name “duration”. After the callback has completed, all of the returned durations
are examined and the shortest one is used to increment the time position in the output video, if the
settings file did not specify a frame rate and the encoder is capable of variable frame rates. (If a fixed
frame rate is used or is required by the encoder, the output time is simply incremented by the
output frame rate duration and the duration info is discarded.)

It is a best practice to check to make sure AVClip.getVideoFrame() returns an actual frame (or
chunk of audio in the case of audio clips). This is because in some cases the clip representing the
source track may not be able to return a frame due to an error in the file or some other problem. In
such cases, this callback simply aborts the transcode by returning false from the function. The
callback has final say over when the output video ends – you could terminate the video short if you
wished, so only return false if you really want the video to end at that time.

The source frame is copied and converted into the destination output video's frame by the code that
reads “destRast.convertFrom(srcRast)”. DestRast is the exporter's output raster, and
whatever is copied into it is first converted to its width, height, and pixel format. If an aspect ratio
correct modewas specified in the settings file, black padding is also added if needed to make the
input conform.

The following is an example of how a basic assembly track's callback might look like:

function videoCallbackBasic(clip, clipNum, reqTime, remTime, inFrameNum,
outputInfo, destRast, &userData)

{

var duration;

var srcRast = clip.getVideoFrame(reqTime, duration);

if (srcRast)

{

destRast.convertFrom(srcRast);

return duration;

}

return -1;

263

CHAPTER 5 MediaRich CORE Audio/Video 2

}

The big difference with basic callbacks is the clip is not an array – it is a single clip (since only one will
be passed in at a time due to everything being an append) and all of the other info that was normally
in each entry in the clip array is now spread out across the parameters. (Normal clip callbacks all have
this info as well, it's simply more neatly contained.) The other difference is basic callbacks return the
duration of the frame of the clip with the function, and return -1 to terminate the transcoding
process.

In both types of callbacks, the last parameter is a user data object. TheMediaScript program can
pass any type of variable or object to the callbacks, and this is entirely for the user's use. The user
data parameter is assigned on a per-track basis, just like the callback is, and in fact is assigned to the
track at the same time as the callback:
processor.setTrackCallback(vidOutTrackNum, videoCallback, myUserData);

In this case if this was an extension of the example transcoding script in the previous section we
would have had to get the video track number from addClip() and store it in the variable
“vidOutTrackNum” in order to tell the processor which track was being assigned a custom callback.
The variable named “myUserData” is an example of passing a variable to the callback. If you do need
a custom callback but don't need to pass user data, it is recommended to leave off the user data
parameter to this function call – AVProcess will automatically pass in an undefined type to the
callback for the user data for you.

Working with AVClips

Video clips and audio clips are completely separate entities – a clip created from a video track knows
nothing about any of the other tracks that were contained in its parent file. For this reason, the
default duration of AVClips is the duration of the entire parent container. This means the duration of
both the audio and video tracks from the same container file will be the same unless a start time or
duration is specified when the AVClip is constructed.

Because AVClips automatically fill in missing audio or video until their duration is reached, this keeps
any clips that are laid out in an output movie in sync. Note that sources with damaged audio
information may still lose sync if the damage is somewhere besides the start or end of the audio
track. There is currently no time stretching available in AVCore 2 to fix these damaged audio tracks.
Video tracks with missing frames will have their previous frame extended to fill in themissing ones,
however.

It is not allowed to lay out tracks in an AVProcess that have gaps. If you call AVProcess.addClip()
and add a clip at a time position that creates a null space in the track, you will get an error when
AVProcess.execute() is called. Clips can overlap and butt up end-to-end, but they cannot be
placed sparsely. If you need empty space in a track, create an empty VideoStill and use it to fill in the
gap you want to have in the audio or video track.

264

MediaRich CORE 6.2 • Programmer's Guide

It is possible to create voice over or soundtracks that replace existing audio from various video file
inputs. The video tracks are assembled as they normally would, but the audio track would come
from a different container source than the video track clips. That source can have clips that do not
match with the ends of the video clips. If it is required that both audio and video tracks end at exactly
the same time, the clips on one of the output tracks can be lengthened or shortened by specifying
the duration of the source clip. For audio clips, AVClip will lengthen it with silence or truncate it as
needed so it ends at the specified duration. For video clips, the last frame in the clip is repeated until
the duration is met. The following diagram illustrates how an output video might look using this
technique:

AVCore 2 Metadata

AVCore 2 provides access to video and audio metadata with a fewAPI functions. This is in addition to
the standard Exif, XMP, and IPTC metadata support provided by MediaRich. (For more information
about the general metadata support, see CHAPTER 10 , “MediaRich Metadata Support” on
page 326.)

You can read and storemetadata at the container/file level and at the track level. Each metadata
value is kept in a named key, and all keys are string values. Metadata values can be either strings or
binary data; however, the two handlers included in MediaRich CORE 4.0.0 only use string metadata
at this time.

Note: There is no commonality between metadata keys for different file formats and the
codecs assigned to each track. For example, some containers might support metadata stored
under the key name “title”, but others might not or it could be a different key. There is currently
no automatic mapping system for metadata being read in from one container or codec and
stored in another. Such a mapping system could be created in MediaScript without too much
trouble; themain part of the work being to learn and research the kinds ofmetadata the
containers and tracks for each format planned for use can hold.

To see what metadata is available in an opened file or track/clip, use the getMetaKeys() function
on the AVContainer to enumerate available data at the file level, or use the same function on an
AVClip to get it at the track level. This function returns a comma-separated list of available key
names, which can be split() and then all individual values can be read using either
AVContainer.getMetadata() or AVClip.getMetadata(). Refer to the MetadataDemo.ms
script for an example on passing any available metadata from a source video to a new output video.

265

CHAPTER 5 MediaRich CORE Audio/Video 2

AVCore 2 Best Practices

The following sections provide helpful information about working with AVCore 2.

Pixel formats

While AVCore 2 supports several different pixel formats, paletted video frames are not supported at
this time. For this reason, these types of videos must be re-saved as RGB or YUV before processing
with AVCore 2.

Avoid using Media objects in the frame callback, if possible

At this time, Media objects are not optimized for video transcoding and will slow down the transcode
process. One of themajor AVCore 2 optimizations over AVCore 1 is the ability to avoid raster pixel
format conversions whenever possible. If all inputs are YUV420P and the output is YUV420P, the
frames will pass through without requiring conversion to something else (although there could be
scaling and padding if needed.)With AVCore 1 (and when using Media objects in AVCore 2) the
rasters are converted to RGB pixel data, which can cause a slight loss in quality as well as incurring the
overhead of having to go from YUV->RGB->YUV for each frame or sub-element in a scene.

Since AVRasters do not currently support compositing, drawing text, or any other operations other
than copy-convert—you will still need to use a Media object during some points of the transcode if
you need to modify the frames in someway. The best way to handle this is to write the callback to
only convert to a Media object when needed, and at every other time position in the video you
should pass back the source AVRaster from the clip directly to the destination encoder raster.
Examples of this can be seen in the FadeDemo.ms and DissolveDemo.ms sample files, which only
use theMedia object when the transitions need to be applied.

In some cases, it will not be possible to do this. For example, overlaying a logo over an entire video
will require every frame be turned into a Media object, composited, and then converted back into
the destination raster's format. If you do wish to speed up transcodes for logo overlay, consider only
displaying the logo for part of the video, and have it fade in and out from time to time.

Avoid using Media.scale() if possible

The scale() function in theMedia object can be a major bottleneck in video transcodes, and
because there is built-in fast scaling and padding when the frame is passed to the encoder, it is often
not necessary. In AVCore 1, there was no built in aspect ratio correction in the QuickTime encoder, so
it had to be done by theMedia object for every frame. In AVCore 2, this is not the case and you will
see a slowdown if you use your existing AVCore 1 callback functions 1without making changes.

However, there are still cases where Media.scale()will be required. Because the padding is
applied after the frame has passed from control of the callback to the encoder, overlaying logos, text,
or dissolves will require Media.scale() be used during those times to normalize the frame for the
elements being applied. The base framewill need to be scaled to the output dimensions (helpfully
provided to the callback; see the examples and API ref) with constrain set to true, and then you can
apply your elements to that base frame and pass it to the encoder's destination frame. This is only
required if you are unsure of the aspect ratio of all your inputs – if you know they all have the same

266

MediaRich CORE 6.2 • Programmer's Guide

aspect ratio, then scaling with Media.scale() is not necessary since any padding (if any) will be the
same for all of them. The only thing to do is calculate the correct position of the object that needs to
be overlaid since the inputs width and height could still change.

Prescale composited elements, if possible

In some cases you might be able to prescale the elements you are planning to composite onto a base
frame, if you can gather enough information about the clips being assembled. This will avoid some of
the Media.scale() calls done in the callback, but it also will require morememory to keep all of
these pre-scaled assets around as Media objects.

Don't use VideoStills for overlay elements

Themain purpose of the VideoStill is to insert something into a sequence that isn't going to
require compositing via theMedia object. If you need a static logo over every frame, it is more
efficient to simply use the original Media object that contains the image instead of converting it to a
VideoStill and then back into a Media object in the callback for the compositing. VideoStills
aremeant for title cards or other still images that need to be inserted into a sequence and will be
displayed on their own (or are the base element) since they exist to emulate a video clip.

Check the inputs before operating on them

The AVContainer() and AVProcess() classes have several member functions that you can use to
query the contents of the input file and settings file, respectively. It is better to use thesemethods
instead of trying to add clips for tracks that don't exist in the input or output and expecting to catch
the errors that result after the fact.

For AVContainer, the hasVideo() and hasAudio() are very useful and provide a quick, easy
way to determine if an input file has any video or audio tracks in it at all. You can then skip executing
all the portions of your code that relate to these types of tracks. Similarly, AVProcess also supports
thesemethods, and can quickly tell you if the settings file has any video or audio tracks defined for
the output file. Refer to the AVCore 2 examples to see one way these concepts can be implemented.

267

CHAPTER 6

MediaRich CORE Audio/Video 1.1
(Legacy)

268

MediaRich Audio/Video version 1.1 is implemented on top of the Apple QuickTime technology, and
its capabilities are closely tied to capabilities of QuickTime. In addition, the PC version enhances the
QuickTime functionality by allowing it to read and writeWindows Media (WMV/WMA) files.

Important: As the QuickTime professional transcoding capability is deprecated, theMediaRich
CORE A/V 1.1 is also deprecated. We highly recommend that you do NOT utilize theMediaRich
CORE 1.1 API unless absolutely necessary for a specific operation. A/V CORE 1.1 is 32-bit only,
so you will need to retrieve the 32-bit MediaRich 4.0 before proceeding with any A/V CORE 1.1
usage.

TheMediaRich Audio/Video 1.1 capabilities are exposed as MediaScript API, a library ofMediaScript
objects that extend the base capabilities ofMediaRich.

Chapter summary

“A/V CORE 1.1 Overview” on page 269

“Using MediaScript to Access A/V 1.1 Objects” on page 270

“Querying MovieMetadata” on page 273

“Extracting Frames from aMovie” on page 275

“Using ExportMovie to Create NewMovies” on page 276

“Using Compression Settings Files” on page 283

“The Scene Sampler ” on page 283

“The AVCore 1.1 Examples” on page 285

MediaRich CORE 6.2 • Programmer's Guide

A/V CORE 1.1 Overview

MediaRich A/V can be used to process and create audio and video files in a variety of formats. To
simplify explanations, all such files are referred to as “movie” files.

MediaRich A/V Core 1.1 is exposed to theMediaScript programmer as a number of objects (classes)
and functions. These entities become available within a script by including the “QuicktimeMovie.ms”
MediaScript file.

The primary object used to process movie files in MediaRich CORE A/V 1.1 is the “QuicktimeMovie”
object. A QuicktimeMovie object represents a single movie file on which to perform operations.
Using this object, you can query themoviemetadata (width, height, frame rate, etc.), extract
individual frames, and process and recompress themovie.

The ExportMovie function is called when multiple movies are to be combined to produce a new
movie file. The calling script first instantiates a QuicktimeMovie object for each of the sourcemovies,
and then passes those objects, along with additional parameters, to the ExportMovie function to
produce the derivativemovie.

In version 1.1, ExportMovie supports overlay of alternate audio track, replacing the existing audio in
themain inputs

A/V Core 1.1 Licensing
TheMediaRich A/V 1.1 capabilities are built into MediaRich, but are not enabled by default. To use
the A/V 1.1 features in MediaRich, you must install a MediaRich license file (license.bin) that enables
those features. Standard MediaRich evaluation and production licenses do not enable A/V
functionality. Contact an Equilibrium Sales Representative to obtain a license that enables the A/V
features. Use theMediaRich CORE Administration utility to install any license file you receive from
Equilibrium.

Adding QuickTime Support
In order to use any of the QuickTime video features on theWindows platform, you must ensure that
QuickTime is installed. You can download the QuickTime player for Windows at
http://www.apple.com/quicktime/download/. Run the setup file to install QuickTime. To work with
Flash files, you must also have a Flash encoder QuickTime plug-in installed.

QuickTime wrapper: low-level audio/video API

If you plan to use the lower-level QuickTime classes and methods, these are documented in
AVLowLevelDocs.html, which is located in theMediaRich All Media Server/MediaRich Documentation
directory in your MediaRich server installation.

269

http://www.apple.com/quicktime/download/

CHAPTER 6 MediaRich CORE Audio/Video 1.1 (Legacy)

Using MediaScript to Access A/V 1.1 Objects

To access theMediaRich A/V 1.1 API, a script must first include the QuicktimeMovie.ms file. This is
done with the following line of code:
#include “sys:/QuicktimeMovie.ms”

Error handling

Most of the APIs methods and functions throw an exception if an error occurs. If the exception is not
caught by the script, the script will stop executing and an error will be returned to the client
application.

Units of time values

Most time values passed to and returned by the API methods and functions are in seconds. Some
functions have versions that accept QuickTime timescale units. These functions all end with the
string "ByTimescale".

Instantiating a QuicktimeMovie object
To begin working with an existing movie file, a script instantiates a QuicktimeMovie object, passing
the path to the QuickTime file as a parameter to the QuicktimeMovie constructor function.

new QuicktimeMovie(movieFile) constructor

The QuicktimeMovie(movieFile) constructor creates a newQuicktimeMovie object.

Syntax

var movie = new QuicktimeMovie(“MyMovies/TVSpot1.mpg”);

Returns

AQuicktimeMovie object representing the specified movie file.

If the specified movie file does not exist or is not readable, an exception is thrown.

SMPTE Time Code Support
A/V Core 1.1 provides SMPTE Time code support with Quicktime 7.6+ installed.

If your media source already has a SMPTE time code track stored in it (if it comes from a professional
piece of capture equipment, this should be the case), all you need to call is the following:

SMPTETime = QTMovie.timeToSMPTE(<time in seconds>)

And the corresponding SMPTE time is returned in an object that contains the following fields: hours,
minutes, seconds, frames, and text. The text field contains an actual SMPTE-formatted text string
with the time in a printable format.

270

MediaRich CORE 6.2 • Programmer's Guide

If themovie does not have an SMPTE track, you can call QTMovie.addTimeCode(...) to add one.
This method takes the following parameters:

• UseDropFrame - for color NTSC, 2 frame #'s must be skipped every minute except at minutes
divisible by 10. This is the standard because NTSC isn't really 30 fps so set this param to “true” to
enable this.

• TimeScale - Frame rate of the sourcematerial. 2400 for film, 2500 for PAL/SECAM, 3000 for B&W
US video, 2997 for NTSC color video.

• FrameDuration - set to 100. (You must use other TimeScale values above if you set this to
something other than 100.)

• NumFrames - Number of frames that make up one (1) second of video. Use 24, 25, 30, and 30
respectively for each standard listed above.

• Hours, Minutes, Seconds, Frames - Each of these parameters gives an offset to the
starting time that will correspond to the first frame of video in themovie. (Defaults to zeros for all
of them (00:00:00;0) if not specified.)

• Visible - If true, a visible display of SMPTE time is shown during movie playback in QTPlayer.
• Track - Normally the first video track is bound to the SMPTE track. This lets you specify another

track.

Important: In order for this to update the file, themoviemust be opened with writing
enabled (new QTMovie(name, Quicktime.newMovieActive,

Quicktime.fsRdWrPerm)). Otherwise, the changes will be lost. You also must call
QTMovie.updateResource() to write the changes out.

• QTMedia.getSample() function allows return of raw samples from a track's media. This allows
for text tracks to be returned.

The following example code shows how to display all the text in a movie containing a text track:
function textTest(inname)

{

var movie = new QTMovie(inname);

var track = movie.getIndTrackType(1, Quicktime.TextMediaType,

Quicktime.movieTrackMediaType);

var media = track.getMedia();

var curtime = 0;

while (true)

{

var duration;

var mystr = media.getSample(Quicktime.TextMediaType,

curtime, curtime, duration);

if (!mystr)

break;

print("Found text sample at "+curtime+"\n");

print(">"+mystr+"<\n");

271

CHAPTER 6 MediaRich CORE Audio/Video 1.1 (Legacy)

curtime += duration;

}

movie.dispose();

}

Note: Movie.getNextInterestingTime() does not return the correct times with text
tracks, so the time and duration from getSample()must be used instead.

Using FFMpeg Objects
This object provides a wrapper for the FFMpeg tool. It simply executes that tool, passing it input and
output paths and a set of user-supplied options. This enables FFMpeg export to be used for proxy
video and other transcodes as a third-party expansion.

For example, Flash Video transcodes can be provided in MediaRich for FLV proxy generation, or
previews without requiring the installation of a special FLV plug-in for QuickTime. It does provide this
functionality under the umbrella of theMediaRich processing architecture, providing fault tolerance
and scalable deployment.

Note: This is not interoperable with the frame handling system in the A/V Core 1.1.

To use this object, the ffmpeg.exe binary, along with its supporting shared library, must be installed
in the Bin/MediaEngine directory.

Use of the FFMpeg link library looks like the following:
var ffmpeg = new FFMpeg();

try

{

ffmpeg.execute(

"avikitex:/Media/iMac_Dance_2997.mpg", "avikitex:/Out/_MPEG2_NTSC.mpg",

"-target xxntsc-dvd -b 3000k -ab 224k -sws_flags experimental");

}

catch (ex) {

throw ex + "\n" + ffmpeg.getLastError();

}

The FFMpeg object has two methods:

execute - This method takes an input path, an output path, and a string containing a list of ffmpeg
options that are passed through to the ffmpeg tool.

getLastError - If the executemethod throws an error, this method can be called to get the error
message that was returned by the ffmpeg tool.

272

MediaRich CORE 6.2 • Programmer's Guide

Querying Movie Metadata

After the AVCore 1.1 QuicktimeMovie object is instantiated, that object can be used to obtain
information about themovie file that it represents. The following methods of the QuicktimeMovie
object are used to access themovie characteristics.

<movie>.getWidth()
The AVCore 1.1 <movie>.getWidth()method returns the width of themovie, in pixels.

Syntax

var width = movie.getWidth();

Returns

An integer value indicating the width of themovie.

<movie>.getHeight()
The AVCore 1.1 <movie>.getHeight()method returns the height of themovie, in pixels.

Syntax

var height = movie.getWidth();

Returns

An integer value indicating the height of themovie.

<movie>.getFileName()
The AVCore 1.1 <movie>.getFileName()method returns the base file name of themovie file.

Syntax

var name = movie.getFileName();

Returns

A string containing themovie file name.

<movie>.getFilePath()
The AVCore 1.1 <movie>.getFilePath()method returns the full path of themovie file.

Syntax

var path = movie.getFilePath();

273

CHAPTER 6 MediaRich CORE Audio/Video 1.1 (Legacy)

Returns

A string containing themovie file path.

<movie>.getFrameCount()
The AVCore 1.1 <movie>.getFrameCount()method returns the number of video frames in the
movie.

Syntax

var frames= movie.getFrameCount();

Returns

An integer indicating the number of frames in themovie.

<movie>.getDuration()
The AVCore 1.1 <movie>.getDuration()method returns the length of themovie.

Syntax

var duration = movie.getDuration();

Returns

A floating point value indicating the length of themovie, in seconds.

<movie>.getNumChannels()
The AVCore 1.1 <movie>.getNumChannels()method returns the number of channels of the first
audio track in a movie.

Syntax

var numChannels = movie.getNumChannels();

Returns

An integer value indicating the number of audio channels.

<movie>.getSampleFormat()
The AVCore 1.1 <movie>.getSampleFormat()method returns the size of each audio sample of
the first audio track in a movie.

Syntax

var formatInfo = movie.getSampleFormat();

274

MediaRich CORE 6.2 • Programmer's Guide

Returns

An object that contains the following member: size. This member contains an integer indicating the
audio sample size in bits.

<movie>.getSampleRate()
The AVCore 1.1 <movie>.getSampleRate()method returns the sample rate of the first audio
track in a movie.

Syntax

var sampleRate = movie.getSampleRate();

Returns

An integer value indicating themovie audio sample rate.

Extracting Frames from a Movie

After the AVCore 1.1 QuicktimeMovie object is instantiated, you can extract any number of
individual frames from the underlying movie file as MediaScript Media objects.

<movie>.getFrameAtTime(time)
The AVCore 1.1 <movie>.getFrameAtTime(time)method extracts a frame from themovie.

Syntax

var frame = movie.getFrameAtTime(2.5);

Parameters

time - the time, in seconds, of the frame that should be extracted.

Returns

AMedia object containing the frame at the indicated time. See “Media Object” on page 68 for
information about media operations and saving the contents of the returned Media object.

<movie>.saveFramesAtTimes(times, outPathFmt, frameWidth)
The AVCore 1.1 <movie>.saveFramesAtTimes(times, outPathFmt, frameWidth)method
extracts a series of frames from themovie and saves them to a set of numbered files, optionally
scaling each frame before saving it.

Syntax

var frame = movie.getFrameAtTime(times,“thumbnails/thumb_%d.tif”, 128);

275

CHAPTER 6 MediaRich CORE Audio/Video 1.1 (Legacy)

Parameters

times - an array of floating point values representing the times of the frames to be extracted from
themovie.

outPathFmt - a printf style format string that specifies the path and names of the resulting output
files. This string should contain a single instance of the format specifier ‘%d’ to indicate where the
frame number should be expanded into the output file name.

frameWidth - an optional parameter that indicates the desired width of the frames to be saved. If
this parameter is not specified or is 0, then the frames will not be scaled and will therefore be the
same size as themovie. If a non-zero value is specified, then each framewill be scaled proportionally
to have the indicated width.

Returns

This method returns no objects.

Using ExportMovie to Create New Movies

Use the ExportMovie function to create newmovie files. This function takes a list of input sources as
well as parameters that describe the operations to be performed and compression settings to be
used to create the newmovie file.

ExportMovie is a complex function. To supplement this information, there are sections that provide
detailed information about its parameters.

ExportMovie(inputs, outputPath, settings, processObject)

The AVCore 1.1 ExportMovie(inputs, outputPath, settings, processObject)method
creates a newmovie file from input sources and parameters.

Syntax

ExportMovie(inputs, outputPath, settings, proc, audioInputs);

Parameters

inputs - a single input source, or an array of input sources.

outputPath - the path of themovie file to be created.

settings - the format and compression settings to be used to compress themovie.

processObject - an optional parameter that describes the image processing operations to be
performed on each frame of themovie.

audioInputs - an optional parameter that causes the audio to be replaced with another set of
audio.

Returns

This method returns no objects.

276

MediaRich CORE 6.2 • Programmer's Guide

ExportMovie: Inputs Array
The “inputs” parameter for ExportMovie consists of an array of one or more input sources to be
used to construct the newmovie file. Input sources can be any combination of QuicktimeMovie
and VideoStill objects. As a convenience, a single QuicktimeMovie or VideoStill object, or
the path to a movie file can be passed in the “inputs” parameter. In these cases, that single object or
file is used as the only input source for the export operation.

The content of the newmovie consists of each input source, appended one after the other, in the
order that they appear in the input array. Multiple segments from a single input movie file can be
specified by creating multiple QuicktimeMovie objects that refer to that samemovie file.

Each QuicktimeMovie object in the “inputs” list represents a segment of a movie file. By default,
the entire length of a sourcemovie is added to the destination movie. By calling the setSegment()
method for a QuicktimeMovie object, you can add an arbitrary portion of the underlying movie to
the output.

Example

To help illustrate the use of the inputs parameter, the following example creates a newmovie
consisting of the first five seconds of a sourcemovie, followed by a one-second blank blue frame,
followed by a complete second sourcemovie, and ending with a copyright image displayed for five
seconds.
var inputs = new Array();

inputs[0] = new QuicktimeMovie(“InputMovie1.mov”);

inputs[0].setSegment(0.0, 5.0);

inputs[1] = new VideoStill(inputs[0].getWidth(), inputs[0].getHeight(), 0x0000ff,
1.0);

inputs[2] = new QuicktimeMovie(“InputMovie2.mov”);

inputs[3] = new VideoStill(“copyright.tif”, 5.0);

ExportMovie(inputs, “NewMovie.*”, settings);

Segment Method and Parameters

Use the <movie>.setSegment(start, duration)method to add a segment of the underlying
movie to the output.

Syntax

var movie = new QuicktimeMovie(“Minnie.mov”);

movie.setSegment(2.5, 5.0);

Parameters

start - the start time, in seconds, of the segment.

duration - (optional) the duration, in seconds, of the segment. If the value is 0 or not set, the
duration will be to the end of themovie.

277

CHAPTER 6 MediaRich CORE Audio/Video 1.1 (Legacy)

Returns

Nothing

VideoStill Methods and Parameters

The VideoStill object is used to add a static frame of a specified duration to the output movie.
There are three forms of the VideoStill constructor that return a VideoStill object.

new VideoStill(imagePath, duration)

Creates a VideoStill object representing the inclusion of a still image for a specified duration in
the output movie.

Syntax

var still = new VideoStill(“popeye.jpg”, 2.0);

Parameters

image - The path of the image file to be included.

duration - the duration, in seconds, of the included image.

new VideoStill(media, duration)

Creates a VideoStill object representing the inclusion of a still image for a specified duration in
the output movie.

Syntax

var still = new VideoStill(media, 2.0);

Parameters

media -Media object containing the image file to be included

duration - the duration, in seconds, of the included image

new VideoStill(width, height, color, duration)

Creates a VideoStill object representing the inclusion of a blank frame for a specified duration in
the output movie.

Syntax

var blank = new VideoStill(128, 96, 0x00cc00, 1.5);

Parameters

width - The width of the frame.

height - The height of the frame.

color - The color, as an RGB integer value, of the frame.

duration - the duration, in seconds, of the frame.

278

MediaRich CORE 6.2 • Programmer's Guide

ExportMovie: Output Path
The outputPath parameter specifies the path and name of the resulting movie file.

If the specified path ends with an asterisk (“*”) character, the extension appropriate for the specified
output container type is appended to the output path. Prior to appending the extension, the “*” is
removed. If the path contains a period “.” character, then any characters between the last “.” and
the end of the path will also be removed.

There are two ways to use this functionality:

• To add an extension without stripping off any existing extension, add “.*” to the end of the
output path parameter.

• To replace an existing extension with the appropriate one for the output type, add just “*” to the
end of the output path.

ExportMovie: Format and Compression Settings
The settings parameter provides settings that specify what kind ofmovie file will be created,
including all the audio and video compression parameters. The parameter can be either a string
specifying a file path to a file containing the QuickTime settings, an Array or Buffer object containing
the settings, or an “on-the-fly” settings object that just specifies the output container type to use.

Before creating movie files using the ExportMovie function, one or more QuickTime orWindows
Media (Windows only) settings files should be created or obtained and placed in a location that is
accessible to the script calling the ExportMovie function. In most cases, the DeBabelizer application is
used to create these files. In the case ofWindows Media format settings for a Windows version of
MediaRich, Microsoft’s Windows Media Profile Editor tool is used instead. For information about
creating these files, see “Using Compression Settings Files” on page 283.

A fairly complete set of settings files is included with MediaRich Audio/Video. If these files are
sufficient for your needs, you can use them instead of having to create your own files.

It is possible to specify an export operation without having to have a settings file available. The
“settings” parameter will accept an object that contains just the specification of the output container
type to be used. This object should contain two member variables named “subType” and
“manufacturer”, the two bits of information QuickTime uses to specify a particular container. Each of
these should be an integer value. In this case, the default compression settings for that container
type are used. This is obviously very limiting. This functionality was added primarily for testing and
for use while learning to use the system. It is not recommended that this method be used in a
production environment.

The following is an example of using this “on-the-fly” output specification:
var settings = new Object();
settings.subType = numFrom4cc(“MooV”);
settings.manufacturer = numFrom4cc(“appl”);

This specifies the output of a QuickTime .mov file using the default compression settings, which for
QuickTime 7 outputs a H264 compressed movie. The numFrom4cc() function is a utility function

279

CHAPTER 6 MediaRich CORE Audio/Video 1.1 (Legacy)

that converts a four-character string to an integer, to facilitate the use of the four-character codes
routinely used in QuickTime programming.

ExportMovie: Process Object
The processObject parameter is optional and can be used to modify the export process in a
number of ways. Use the processObject to specify the following:

• The width and height of the exported movie.
• A custom method for obtaining and modifying each video frame prior to export.

<processobject>.getOutputSize()

The <processobject>.getOutputSize()method allows the process object to specify the
desired size of the output movie

Syntax

processObject.getOutputSize ();

Parameters

None.

Returns

An array containing two integer values specifying output width and height, or null.

If a process object is provided and it contains a getOutputSize()method, this method is called by
ExportMovie to allow the process object to specify the desired size of the output movie. If the
process object needs to specify the output size, this method should return an Array object
containing two integers indicating the width and height (in that order) of the output movie. If this
method returns null, ExportMovie uses other means to determine the output size (see “Determining
the Output Movie Size” on page 283). If 0 is returned for either height or width, that value is
computed from the other value to preserve the aspect ratio of the first input source.

SomeQuickTime settings include a specification for width and height. In these cases, the specified
video compressor will usually enforce that width and height by forceably scaling each frame to that
size. Because of this, getOutputSize()methods will usually want to just return these values or
null if they exist.

If the QuickTime settings for the export operation include a width and height, the
“settingsOutputSize” member variable will be set on the process object prior to calling the
getOutputSizemethod. This member variable will be an Array containing two integer values
indicating the width and height (in that order) specified by the QuickTime settings.

The following is an example of using the getOutputSizemethod that allows for width and height
values specified by the QuickTime settings. This method sets the output size to 640x480 if no
width/height is specified in the QuickTime settings:
processObject.getOutputSize = function()

{

280

MediaRich CORE 6.2 • Programmer's Guide

if (this.settingsOutputSize)

return null;

return [640, 480];

}

<processobject>.getFrame()

By supplying a process object with a getFramemethod, the calling script can preprocess each input
frame in any way it sees fit. It could, for example, composite a company logo or some copyright text
onto each frame.

Syntax

<processobject>.getFrame(input, inTime, inFrame, outTime, outFrame);

Parameters

input - The current input object (a QuicktimeMovie or VideoStill object).

inSegment - The segment (both time and duration) of the input movie being requested.

inFrame - The current frame number in the input source.

outTime - the current time in the output movie.

outFrame - the current frame in the output movie.

Returns

AMedia object.

Each time the getFramemethod is called on the Process Object, it must return either media
containing the next frame to be inserted into themovie, or NULL to indicate that no frame should be
inserted at the current output time. If NULL is returned, the prior frame’s duration is extended to
make up for themissing frame.

The inSegment parameter is an object containing two fields; “currentTime” and “duration”.
Together, these fields specify the segment of the input movie that the getFramemethod is
expected to return. The “duration” field can bemodified by the getFramemethod to change the
duration of the returned frame. This will cause the frame rate of the output movie to be changed.

The following examples help illustrate the use of the Process Object parameter.

Example 1

This example shows how to write a Process Object that simply returns the requested frame. Such an
object has the same affect as if no Process Object was supplied.
var processObj = new Object();

processObj.getFrame = function(input, inTime, inFrame, outTime, outFrame)

{

return input.getFrameAtTime(inTime.currentTime);

281

CHAPTER 6 MediaRich CORE Audio/Video 1.1 (Legacy)

}

ExportMovie(inputs, “result.mov”, settings, processObj);

Example 2

This example composites a logo at the top-left corner of each frame of the output video:
var processObj = new Object();

processObj.logo = new Media();

processObj.logo.load(name @ “ourLogo.tif”);

processObj.getFrame = function(input, inTime, inFrame, outTime, outFrame)

{

var frame = input.getFrameAtTime(inTime.currentTime);

frame.composite(source @ this.logo, handleX @ “left”,

handleY @ “top”);

return frame;

}

ExportMovie(inputs, “result.mov”, settings, processObj);

Keep in mind that the getFramemethod of your Process Object is called many times during
processing. You should make this function as efficient as possible. Notice that this example loads the
logo file just once before calling ExportMovie(). If it loaded the logo file within the getFrame
method, it would load the same file over and over again for every frame of themovie.

ExportMovie: Alternate Audio Track Inputs
The alternate audio track input array (audioInputs parameter) is optional. When it is not specified,
the audio comes from themain inputs. This parameter can specify a string pathname to a file, a
single QuicktimeMovie object input, or an array of QuicktimeMovie objects. This is the same as
for themain inputs. The input CANNOT be a VideoStill or VideoSource object, because those
do not contain audio.

If an array of inputs is specified, the inputs are appended to one another in the output movie, just as
themain inputs are.

The inputs can be either an audio-video source or an audio source. If it is an audio-video source, the
video track is ignored.

Themain inputs dictate the overall time of the output movie. The alternate audio input is cropped to
the length of themain inputs. If the alternate audio input is shorter than themain inputs then
silence will be inserted until themain inputs are completely processed.

Example

ExportMovie("MyMainMovie.flv", "OutputMovie.mov",

"MySettingsFile.dat", null, "BGScore.mp3");

This creates an output movie and replaces the audio from MyMainMovie.flv with BGScore.mp3. The
null parameter for proc indicates no custom frame callback is specified in this example.

282

MediaRich CORE 6.2 • Programmer's Guide

Determining the Output Movie Size
ExportMovie uses the following progression to determine the size of the output movie:

1. If a process object was supplied and it contains a getOutputSizemethod, that method is
called. If that method returns a non-null value, the return value is assumed to be an Array
containing two integer values representing width and height, and those values are used as the
width and height of the output movie.

2. If the QuickTime settings specify output width and height values, those values are used.

Using Compression Settings Files

Previously, the settings files in AVCore 1 consisted of QuickTime atom containers or Windows Media
.prx files. For MediaRich 4.0 and AVCore 2, these are now all text-based JSON files and the parameters
in the settings files aremostly standardized across handlers (this enables easy programmatic
changes, or simple editing manually). In AVCore 1, most settings files accepted by the ExportMovie
function can be created using the AVCore 2 settings generator on theMediaRich Server. If you have
licensed MediaRich Audio/Video or are evaluating it, you should have this utility on your MediaRich
server.

For information about creating these settings files using the AVCore 2 settings generator, see “Using
AV Settings Files” on page 255.

After you have created one or more settings files, they must bemade available to theMediaRich
server. This is done in the sameway any source asset is made available to MediaRich. For more
information on where to place and how to access source asset files, see “File Systems” on page 39.

The Scene Sampler

Included with MediaRich Audio/Video Core 1.1 is a scene sampler module, named
SceneDetectFast.ms. This module chooses a set of frames from a movie to try to provide a good
representation of the content of themovie with just those frames. Themodule tries to avoid similar
or “uninteresting” frames, such as blank areas at the beginning or end of themovie.

Scene Sampler Basic Usage
To make the SceneDetectFast object available for use in a MediaScript script, the file
“sys:/SceneDetectFast.ms” must be included at the top of the script.

Basic use of the sampler involves two steps:

• A SceneDetectFast object is created. Themovie to be operated on is passed into the
SceneDetectFast constructor.

• The detect() method is called on that object. The number of frames that the detect() method
should return times for is passed to themethod. Themethod returns an Array() object that
contains floating point time values, in seconds, of the times of the frames it has chosen.

283

CHAPTER 6 MediaRich CORE Audio/Video 1.1 (Legacy)

The following is an example:
#include “sys:/SceneDetectFast.ms”

var inputMovie = new QuicktimeMovie(“bozo.mov”);
var detector = new SceneDetectFast(inputMovie);
var times = detector.detect(30);

This example chooses 30 representative frames from the “bozo.mov” movie. The “times” variable
ends up pointing to an Array() object containing the times of those 30 frames.

Adjusting the Scene Sampler Behavior
The scene sampler behavior can be adjusted by passing a second parameter to the detect()
method. This parameter should be a JavaScript object, as created with the “newObject()” construct.
Various members of this object can be set before passing it to the detect() method to affect sampler
behavior:
<object>.multiplier

This value determines howmany frames are originally considered by the sampler. The sampler starts
its operation by multiplying the requested number of frames by this multiplier to come up with the
initial set of frames it will consider. It simply breaks themovie up into this number of chunks to select
this number of evenly spaced frames to start with. The default value for this parameter is 10.

For example, if a value of 30 is passed to the detect() method as in the above example, the default
behavior of the scene sampler will be to start with 300 evenly spaced frames from themovie. It will
select the final 30 from this set of 300.

This parameter can be used to adjust the tradeoff between execution speed and precision. If the
scene detector seems to be often missing parts of a movie that you think it should find, you can set
this field to a number larger than 10 to correct this problem. However, the detection process will take
longer after you do this.
<object>.darkCutoff
<object>.lightCutoff

The scene sampler throws out frames that it feels are close to completely black or completely white,
assuming that these are uninteresting frames. These two values influence how the detector decides if
a frame is “too light” or “too dark”. For each frame, a “lightness” value is calculated that is between
0.0 and 1.0. Then the lightCutoff and darkCutoff values are used as thresholds to determine if the
frame should be thrown away. If the frame’s value is smaller than the value of darkCutoff or the
frame’s value is greater than the value of lightCutoff, then the frame is discarded. The default value
for darkCutoff is 0.1 and the default value for lightCutoff is 0.9.

Adjusting these values will control which frames are discarded because they are too light or too dark.
If you set darkCutoff to 0.0 and lightCutoff to 1.0 then no frames will be discarded because they are
too light or too dark.

284

MediaRich CORE 6.2 • Programmer's Guide

The following is the same as the previous example, but with all three of the values discussed in this
section modified from their default values:
#include “sys:/SceneDetectFast.ms”

var inputMovie = new QuicktimeMovie(“bozo.mov”);
var detector = new SceneDetectFast(inputMovie);
var settings = new Object();
settings.multiplier = 20; // start with twice the frames
settings.darkCutoff = 0.2; // throw away more dark frames
settings.lightCutoff = 1.0; // dont’ throw away light frames
var times = detector.detect(30, settings);

See “Example 9: Create an Animated GIF” on page 292 for an example of using the scene sampler to
create an animated GIF file.

The AVCore 1.1 Examples

There are numerous AVCore 1.1 examples supplied as a series of files named “example1.ms” through
“example9.ms”. Also included are a sample input movie and a set of QuickTime Settings files that can
be used with the examples and with your own scripts.

These examples are located in theMediaRichModules directory for your installation ofMediaRich.
The discussion that follows assumes that the reader has a basic knowledge ofMediaRich and
MediaScript programming. Specifically, it is assumed that the reader understands how the query
parameters of an MRLmap to script parameters in a MediaScript script. For information, see “HTTP
API” on page 12 and “Post-Processing Parameters” on page 27.

Example structure

The examples read input files from and write output to a Virtual FileSystem (VFS) named “avikitex”.
This name is mapped to the contents of theMediaRich_AV directory that contains the example
scripts. Scripts that write output to disk rather than returning it to the browser will write to a
directory named Out within theMediaRich_AV directory. For information on setting up and using
Virtual FileSystems, see “File Systems” on page 39.

The example URLs include the query parameter “nc=1”. This parameter simply tells both MediaRich
and the browser not to cache the results of the request. This makes it much more convenient to
modify the example scripts and re-execute them to see the effects of the changes.

Many of the examples calculate a movie file that is stored to the disk and not returned to the
browser. In these cases, it returns a small amount of HTML that displays “OK” in the browser at the
end of the script, just to help the user knowwhen the script completes execution. As this bit of code
is not relevant to our discussion here, it will be left out of the example listings that follow to save
space. #include and comment lines are left out for the same reason.

Running the examples

Each example includes comments at the top of its file describing that example. Included in those
comments is a sample URL. If you open a web browser on theMediaRich Server where the samples

285

CHAPTER 6 MediaRich CORE Audio/Video 1.1 (Legacy)

are installed, you should be able to use this URL as is to execute each example.

If you want to run the examples from a browser running on a different machine, modify each
example’s URL by replacing “localhost” with the name or IP address of theMediaRich Server that is
serving the examples.

Example 1: Simple Transcoder
This function does a simple transcoding of a single movie to a new file. Two string arguments are
passed to the function; the path to themovie file to be processed, and the path to the QuickTime
Settings file from which to obtain the compression settings to be used during the export.

Sample MRL

http://localhost/mgen/avikitex:/Scripts/example1.ms?args="iMac_
Dance.mov","Mov/V=H264,single"&nc=1

Script code

function main(input, settings)

{

ExportMovie("avikitex:/Media/" + input, "avikitex:/Out/example1/" + input + "*",
"avikitex:/QTSettings/" + settings);

}

In its simplest form, the ExportMovie function takes three parameters; a parameter defining the
input movie or movies to be used during the export, the output file path indicating where to write
the resulting movie, and the QuickTime Settings to use to do the export.

Themovie file path passed to the ExportMovie function is assumed to be a path within theMedia
directory at the top level of the “avikitex” VFS. This is why the string “avikitex:/Media/” is prepended
onto the path before passing it to the ExportMovie function. Similarly, the settings file path is
assumed to be below the “avikitex:/QTSettings/” directory.

Output will be written to the “avikitex:/Out/example1/” directory. The name of the output movie will
be the same as the input movie, except that the extension on the output file will be changed to
match the kind of container being written to (as specified in the QuickTime Settings file). The addition
of a “*” to the end of the output path tells ExportMovie to change the output file’s extension to the
proper one for the output format.

If the supplied sampleMRL is used to run this example, the “iMac_Dance.mov” file will be used as the
input movie, the “V=H264,single” file within the “Mov” directory will be read to get the QuickTime
settings, and the resulting file will be written to “avikitex:/Out/example1/iMac_Dance.mov”.

286

MediaRich CORE 6.2 • Programmer's Guide

Example 2: Export a Portion of an Input Movie
This example is similar to Example 1. The only difference in behavior is that only a portion of the input
movie is exported.

Sample MRL

http://localhost/mgen/avikitex:/Scripts/example2.ms?args="iMac_
Dance.mov","Mov/V=H264,single"&nc=1

Script code

function main(input, settings)

{

var inputObj = new QuicktimeMovie("avikitex:/Media/" + input);

inputObj.setSegment(5,4);

ExportMovie(inputObj, "avikitex:/Out/example2/" + input + "*",
"avikitex:/QTSettings/" + settings);

}

To accomplish this, a simple file path cannot be passed as the first parameter to ExportMovie.
Instead, a QuicktimeMovie object is constructed from the input file path. Then, the setSegment
method on that object is called to limit that object’s contribution to the output movie. In this case,
only four seconds of the input movie is exported, starting at five seconds into the input movie. The
QuicktimeMovie object is passed into the ExportMovie function in place of the input file path.

Example 3: Build a Movie from Multiple Sources
This example expands on the first two by exporting two segments of the input movie. It also inserts a
blank frame between the two segments of the input movie that lasts for one second.

Sample MRL

http://localhost/mgen/avikitex:/Scripts/example3.ms?args="iMac_
Dance.mov","Mov/V=H264,single"&nc=1

Script code

function main(input, settings)

{

var inputs = new Array();

inputs[0] = new QuicktimeMovie("avikitex:/Media/" + input);

inputs[0].setSegment(0,4);

inputs[1] = new VideoStill(inputs[0].getWidth(), inputs[0].getHeight(), 0x0000ff,
1.0);

287

CHAPTER 6 MediaRich CORE Audio/Video 1.1 (Legacy)

inputs[2] = new QuicktimeMovie("avikitex:/Media/" + input);

inputs[2].setSegment(8,4);

ExportMovie(inputs, "avikitex:/Out/example3/" + input + "*", "avikitex:/QTSettings/"
+ settings);

}

The key concept here is that ExportMovie can take an Array object as the first parameter, where
each object in that array is either a QuicktimeMovie object or a VideoStill object. The objects
in the array are taken in order to produce the resulting movie.

So here, it first creates an empty Array object. It then creates a QuicktimeMovie object that refers
to the input movie and puts that object into the first slot in the Array. It calls the setSegment
method on that object to so that the first four seconds of the input movie is written to the output.

Next, it creates a VideoStill object and puts it in the second slot in the Array. In this case, it's
creating a still framewith the same dimensions as the input movie. The color of the frame is dark
blue (the color specification is of the form 0xRRGGBB), and the frame remains on the screen for one
second when themovie is played at normal speed.

It then adds a third object to the Array, this time specifying a different segment of the input movie.

And finally, it calls ExportMovie as before, but passing the Array as the first parameter.

Note: This function would work equally well if the second QuickTimemovie object were
constructed from a different input movie file. The input Array can contain input segments from
any number ofmovie files.

Example 4: Change the Output Movie Dimensions
This example is similar to Example 1, except that the output movie is scaled to a particular frame size.
To specify the size of the output movie, an object is created and passed as the fourth parameter in
the call to ExportMovie. This fourth parameter, when specified, is always an Object. Depending on
what members exist in this Object, the export operation is modified in various ways.

Sample MRL

http://localhost/mgen/avikitex:/Scripts/example4.ms?args="iMac_
Dance.mov","Mov/V=H264,single"&nc=1

Script code

function main(input, settings)

{

var processObject = new Object();

processObject.getOutputSize = function()

{

if (this.settingsOutputSize[0] > 0)

return null;

288

MediaRich CORE 6.2 • Programmer's Guide

return [50, null];

}

ExportMovie("avikitex:/Media/" + input, "avikitex:/Out/example4/" + input + "*",
"avikitex:

{

QTSettings/" + settings, processObject);

}

To modify the size of the output movie, it creates an object and adds a getOutputSizemethod to
that object. That method should return an Array with two values in it to indicate the width and
height, respectively, of the output movie. If “null” is passed for one of those two values, that value
is computed to preserve the aspect ratio of the input movie based on the other value.

In some cases, an output width and height are specified in the QuickTime Settings file. When this
happens, it does no good to specify a different size for the output movie. No matter what the system
does, QuickTimewill ultimately resize themovie to match the width and height that were specified in
the settings. This is why the sample code checks the value of “this.settingsOutputSize”.

Before getOutputSize is called, the system sets the value of the “settingsOutputSize”
member variable of the passed-in object to indicate if a width and height were specified in the
QuickTime Settings file. If they are, this variable contains an Array containing two integers that
indicate the width and height specified in the settings. If no width and height are specified in the
settings, this Array will contain -1 for both the width and the height.

The sample getOutputSizemethod checks to see if a valid width value exists in the
settingsOutputSize variable. If so, themethod returns “null” to indicate that it does not specify
an output size. Otherwise, themethod returns a size specification.

The sample code returns a value of “[50, null]”, which indicates that the output movie width should
be 50 pixels, and the height should be whatever it needs to be to preserve the aspect ratio of the
input movie. For example, if the input movie had dimensions 200x100, the output movie has
dimensions 50x25.

Example 5: Process Video Frames (Draw)
This example is similar to Example 1. The difference is that draws the current frame number on each
of the frames of themovie. This is accomplished by creating an Object, adding a getFramemethod
to it, and passing that object as the fourth parameter to the ExportMovie function.

Sample MRL

http://localhost/mgen/avikitex:/Scripts/example5.ms?args="iMac_
Dance.mov","Mov/V=H264,single"&nc=1

Script code

function main(input, settings)

{

var processObject = new Object();

processObject.getFrame = function(inMovie, inTime, inFrame, outTime, outFrame)

289

CHAPTER 6 MediaRich CORE Audio/Video 1.1 (Legacy)

{

var frame = inMovie.getFrameAtTime(inTime.currentTime);

frame.drawText({text:outFrame, size:64, x:5, y:5, handlex:"left", handley:"top",
smooth:true});

return frame;

}

ExportMovie(inputObj, "avikitex:/Out/example5/" + input + "*",
"avikitex:/QTSettings/" + settings, processObject);

}

A getFramemethod takes five parameters. The first parameter is the current input movie being
read. The second and third parameters are the current time and frame number, respectively, in the
input movie. The fourth and fifth parameters are the current time and frame number, respectively, in
the output movie.

In this case, it reads the requested frame from the input movie by calling the getFrameAtTime
method on the input movie. This is a best practice in almost all cases. The getFrameAtTime
method returns a Media object.

After it has theMedia object, it can apply any operation supported by theMedia object. In this case,
it uses theMedia object drawTextmethod to draw the frame number onto the frame.

The getFramemethod is expected to return a Media object, so it simply returns theMedia object it
just read and then modified.

Example 6: Process Video Frames (Rotate)
This example is very similar to Example 5. The only difference is that instead of drawing onto each
frame, it rotates each frame based on the current output frame number. This causes the input movie
to spin around in the newmovie. This demonstrates that you can do just about anything to the
output frame.

Sample MRL

http://localhost/mgen/avikitex:/Scripts/example6.ms?args="iMac_
Dance.mov","Mov/V=H264,single"&nc=1

Script code

function main(input, settings)

{

var inputObj = new QuicktimeMovie("avikitex:/Media/" + input);

var processObject = new Object();

processObject.getFrame = function(inMovie, inTime, inFrame, outTime, outFrame)

{

var frame = inMovie.getFrameAtTime(inTime.currentTime);

frame.rotate({angle:outFrame,smooth:true});

return frame;

}

290

MediaRich CORE 6.2 • Programmer's Guide

ExportMovie(inputObj, "avikitex:/Out/example6/" + input + "*",
"avikitex:/QTSettings/" + settings, processObject);

}

Example 7: Grab Single Frames from a Movie
This example is unlike any of the others. Instead of creating a newmovie file, this function causes a
single frame of the input movie to be returned to the browser. The function accepts a movie name as
its first parameter, but the second specifies the place in the input movie, in seconds, from which to
grab the frame.

Sample MRL

http://localhost/mgen/avikitex:/Scripts/example7.ms?args="iMac_Dance.mov",1.5&nc=1

Script code

function main(input, time)

{

var inputObj = new QuicktimeMovie("avikitex:/Media/" + input);

var frame = inputObj.getFrameAtTime(time);

frame.save({type:"JPEG"});

}

It starts by creating a QuicktimeMovie object and passing it the path to the input movie. Then it calls
the getFrameAtTimemethod on this object, passing it the time parameter. This method returns a
Media object.

To cause theMedia object to be returned to the client browser, it calls the object save()method.
The parameter to the savemethod is the type of image wewant returned.

The sampleMRL above will cause the frame at 1.5 seconds in the iMac_Dance.mov movie to be
returned to the browser. By changing the number at the end of theMRL, different frames of that
samemovie can be returned and viewed.

Example 8: Extract Movie Information
This example expands on Example 7. Instead of returning a frame of the input movie, this function
returns a composite image containing a thumbnail from themovie and some additional information
about themovie—themovie width and height, duration, frame count, and frame rate.

Sample MRL

http://localhost/mgen/avikitex:/Scripts/example8.ms?args="iMac_Dance.mov",1.5&nc=1

Script code

function main(input, time)

{

var inputObj = new QuicktimeMovie("avikitex:/Media/" + input);

var frame = inputObj.getFrameAtTime(time);

291

CHAPTER 6 MediaRich CORE Audio/Video 1.1 (Legacy)

frame.scale({xs:120,constrain:true});

var result = new Media();

result.makeCanvas({xs:400, ys:10 + frame.getHeight()});

result.composite({source:frame, x:5, y:5, handlex:"left", handley:"top"});

var xpos = 130;

var ypos = 5;

var text = "Width: " + inputObj.getWidth() + " Height: " + inputObj.getHeight();

result.drawText({x:xpos, y:ypos, handlex:"left", handley:"top", size:22, text:text});

ypos = 30;

text = "Duration: " + inputObj.getDuration().toFixed(2);

result.drawText({x:xpos, y:ypos, handlex:"left", handley:"top", size:22, text:text});

ypos = 55;

text = "Frames: " + inputObj.getFrameCount() + " FPS: " + (inputObj.getFrameCount() /
inputObj.getDuration()).toFixed(2);

result.drawText({x:xpos, y:ypos, handlex:"left", handley:"top", size:22, text:text,
smooth:true});

result.save({type:"JPEG"});

}

First, it extracts a frame from themovie and scales it to the desired thumbnail size. Then, it creates a
blank image that is a little taller than the thumbnail and has extra width, so that there is an area for
drawing some text.

Next, it composites the thumbnail image onto the blank image. Most of the remaining code involves
extracting information from the input movie and drawing text using that information onto the
output frame. This information is obtained by calling various methods on the QuicktimeMovie
object representing the input movie.

Finally, it calls the save() method of the output Media to send the final frame back to the caller.

Example 9: Create an Animated GIF
This example extracts a series of frames from an input movie to produce an animated GIF that
represents themovie. It also demonstrates using the SceneDetectFast module to choose the frames
to be extracted.

The inputs to this function are the input movie, the number of frames that the GIF will contain, and
the amount of time to delay between each frame in the GIF. If the delay parameter is omitted or is 0,
then the output GIF’s pace will bematched to that of the input movie.

Sample MRL

http://localhost/mgen/avikitex:/Scripts/example9.ms?args="iMac_Dance.mov",30,.25&nc=1

Script code

function main(input, count, delay)

{

var inputObj = new QuicktimeMovie("avikitex:/Media/" + input);

292

MediaRich CORE 6.2 • Programmer's Guide

var detector = new SceneDetectFast(inputObj);

var times = detector.detect(count);

var gif = new Media();

for (i = 0 ; i < count ; i++)

{

var frame = inputObj.getFrameAtTime(times[i]);

gif.frameAdd({source:frame});

}

gif.scale({xs:96, constrain:true});

gif.reduce();

if (!delay)

delay = inputObj.getDuration() / (count-1);

gif.save({type:"gif", delay:(delay*100)});

}

First, it creates a QuicktimeMovie object from the input movie. Then it computes the time delay
between frames to break themovie into equal-size chunks based on the count parameter.

It creates a newMedia object to contain the output GIF. Then the function loops, extracting each of
the desired frames and adding them to the GIF object.

It then scales the GIF to the desired size, and calls reduce() to reduce each frame of the GIF to an 8-bit
image (a requirement of the GIF format).

Finally, it saves the GIF to send it back to the caller. In this case, it passes an extra parameter to the
save()method to specify the delay between frames of the GIF when it is displayed.

293

CHAPTER 7

MediaRich Proof Sheet Generator

294

The Proof Sheet Generator is a MediaRich extension module. It adds an _MR_ProofSheet object to
theMediaScript language. This object exposes a the generatemethod, which takes an XML file as
input and produces a proof sheet PDF document.

Chapter summary

“The generateMethod” on page 295

“Proof Sheet Layout” on page 295

“Defining the Proof Sheet XML Input” on page 296

MediaRich CORE 6.2 • Programmer's Guide

The generate Method

The following is an example of calling the Proof Sheet Generator within a MediaRich script:
#link "ProofSheet.dll"

var ps = new _MR_ProofSheet();

var result = ps.generate("input.xml", "result.pdf”, "errors.txt");

In this standard usage of the generate()method, the first parameter specifies the file that
contains the XML specification of the proof sheet to be generated. The second parameter specifies a
file name for writing the resulting PDF file. The third parameter, which is optional, specifies a file
name to use for writing any error messages or other diagnostic information generated during the
creation of the proof sheet. If the third parameter is omitted, no diagnostic information is returned.

Proof Sheet Layout

A proof sheet consists of one or more pages. Each page consists of three areas: the Header area, the
Body area, and the Footer area.

The Header and Footer areas each consist of three blocks: the Left block, theMiddle block, and the
Right block. The Body area consists of rows and columns of blocks between the Header and Footer.

The following diagram provides a visual representation of the layout of a Proof Sheet, including the
Header, Body, and Footer areas. This diagram also illustrates many of the spacing parameters used
to precisely define the layout of a Proof Sheet. You should refer to this diagram as you review the
remainder of this document.

295

CHAPTER 7 MediaRich Proof Sheet Generator

Defining the Proof Sheet XML Input

A Proof Sheet Specification is an XML document that provides all the information necessary to build
a Proof Sheet. This information can be broken down into the following categories.

Structural Information

The structure of the XML that allows the other parts of the XML document to apply to specific areas
of the proof sheet.

Parameters

Each parameter is a named value (key/value pair) that provides the parameter value used to
construct some portion of the proof sheet.

Text Content

This is the literal text to appear on each page of the proof sheet

Image References

These are file system paths that reference image files containing the images that appear in the proof
sheet.

Proof Sheet Structure
The structure of the XML document is a hierarchy of container objects. The outer container is the
entire proof sheet. The next level consists of the Header, the Body area, and the Footer. Each of
these areas contain Blocks. Each block consists of one or more Text Lines and/or Image Lines.

Any level of the XML hierarchy can contain a parameter block containing one or more parameters.
The parameters in a parameter block apply to the parent block that contains that parameter block.
Those parameters apply to all the child blocks contained in the parent block as well. If the same
parameter appears at multiple levels of the container hierarchy, parameters at the deeper level
override parameters at the higher level. This allows you to specify default parameters that apply to
all areas of a proof sheet, but then override those defaults for specific areas on the sheet.

The following XML tag outline shows all possible block and param tag levels:
<PROOFSHEET>

<PARAMS></PARAMS>

<HEADER>

<PARAMS></PARAMS>

<LEFT>

<PARAMS></PARAMS>

<TEXTLINE>

<PARAMS></PARAMS>

</TEXTLINE>

</LEFT>

296

MediaRich CORE 6.2 • Programmer's Guide

<CENTER>

<PARAMS></PARAMS>

<TEXTLINE>

<PARAMS></PARAMS>

</TEXTLINE>

</CENTER>

<RIGHT>

<PARAMS></PARAMS>

<TEXTLINE>

<PARAMS></PARAMS>

</TEXTLINE>

</RIGHT>

</HEADER>

<BLOCKS>

<PARAMS></PARAMS>

<BLOCK>

<PARAMS></PARAMS>

<TEXTLINE> or <IMAGELINE>

<PARAMS></PARAMS>

</TEXTLINE> or </IMAGELINE>

</BLOCK>

</BLOCKS>

<FOOTER>

<PARAMS></PARAMS>

<LEFT>

<PARAMS></PARAMS>

<TEXTLINE>

< PARAMS></PARAMS>

</TEXTLINE>

</LEFT>

<MIDDLE>

<PARAMS></PARAMS>

<TEXTLINE>

<PARAMS></PARAMS>

</TEXTLINE>

</MIDDLE>

<RIGHT>

<PARAMS></PARAMS>

<TEXTLINE>

<PARAMS></PARAMS>

</TEXTLINE>

</RIGHT>

297

CHAPTER 7 MediaRich Proof Sheet Generator

</FOOTER>

</PROOFSHEET>

The information specified within the enclosing tags for each area (<HEADER> </HEADER>,
<BLOCKS> </BLOCKS>, or <FOOTER> </FOOTER>) determines the content of that area. Within
these enclosing tags are enclosing sub-tags for each of the blocks that can be displayed in that area.
If you do not include a tag for a particular area or block, the Proof Sheet Generator does not render
that element.

Only the <PROOFSHEET> </PROOFSHEET> enclosing tags are required. All other tags are optional.
However, with only these two tags, all you are going to generate is a blank page.

Proof Sheet Page Layout Modes
The PAGE_LAYOUT parameter specifies how space on the page is allocated to the blocks in the body
section of a Proof Sheet, using the following layout modes:

Mode tag Description

Standard Allows for blocks to be enlarged when there is available page space not used by
neighboring blocks
This can result in images and text on the page to be larger than they would
otherwise be, thereby making them more readable. On the last page, where extra
space can occur at the bottom of the page due to fewer blocks appearing on this
page, the extra space is not used by the blocks on the page.
This is the default layout mode if one is not specified explicitly.

StretchLastPage Produces the same results as the standard layout mode, except that any extra
space on the last page is used by other blocks on the page to allow those blocks to
be larger

Fixed Ensures that blocks are never enlarged to utilize extra space on the page
Each block on the page is allotted the same amount of space, and no block more
than this amount. This mode produces the most uniform looking Proof Sheet, but
tends to result in sheets with more blank area on the page.

If the contents of each block in a Proof Sheet is the same size, the Standard and Fixed layout
modes produce the same results. In this case, the only difference is how the last page is laid out.

298

MediaRich CORE 6.2 • Programmer's Guide

Proof Sheet Page Spacing
Specific parameters are used to indicate the layout of the page and the spacing that occurs between
the various blocks on a page. Each of these parameters, except for PAGE_ROWS and PAGE_COLUMNS,
is specified in inches. The following table describes these parameters:

Parameter tag Description

PAGE_WIDTH Specifies the total width of the page, including margins

PAGE_HEIGHT Specifies the total height of the page, including margins

PAGE_ROWS Specifies the total number of rows of Grid blocks on a page

PAGE_COLUMNS Specifies the total number of columns of Grid blocks on a page

PAGE_LEFT_MARGIN Specifies the amount of space between the left edge of page and
page blocks

PAGE_TOP_MARGIN Specifies the amount of space between the top edge of page and
page blocks

PAGE_RIGHT_MARGIN Specifies the amount of space between the right edge of page and
page blocks

PAGE_BOTTOM_MARGIN Specifies the amount of space between the bottom edge of page
and page blocks

PAGE_HEADER_SEP Specifies the amount of space between the header blocks and grid
content blocks

PAGE_FOOTER_SEP Specifies the amount of space between the grid content blocks
and footer blocks

PAGE_ROW_SEP Specifies the minimum amount of space between each row of
blocks in the grid content area

PAGE_COL_SEP Specifies the minimum amount of space between each column of
grid content blocks in the grid area

HEADER_ELEM_SEP Specifies the minimum amount of space between each header
block

FOOTER_ELEM_SEP Specifies the minimum amount of space between each footer
block

299

CHAPTER 7 MediaRich Proof Sheet Generator

Proof Sheet Text Lines
The blocks within each of the proof sheet areas can contain any number of lines. Each line consists of
either text or an image.

The <TEXTLINE> enclosing tags are used to specify a line of text. The following parameters can be
applied to the line of text to control the look and placement (justification) of the text:

Parameter tag Description

FONT_FAMILY Specifies the font family name (string)

FONT_STYLE Specifies the font style (string)
Valid values are NORMAL, BOLD, ITALIC, or BOLDITALIC. If not specified, the
default (NORMAL) is used.

FONT_SIZE Specifies the font size, in points (float)

FONT_MINSIZE Specifies the minimum font size, in points (float)
Text lines, like image lines, are scaled to fit cleanly on the page. In some cases,
you might prefer to allow text to flow into the margins and neighboring
blocks rather than scaling to a size that is unreadable. When specified, this
parameter sets the minimum post-scaling size of the text and the text to
which it is applied is never smaller than this value.

LINE_JUSTIFY Specifies the line justification (string)
Valid values are LEFT, CENTER, or RIGHT.

LINE_TAB_SEP Specifies the line tab separation, in inches (float)

The FONT_FAMILY, FONT_STYLE, and FONT_SIZE parameters specify the look and size of the text.
The LINE_JUSTIFY parameter defines how the text is justified within a block. By default, text is left
justified.

When one or more text lines in a block are left justified and contain a tab character, those text lines
are split at the tab character to define two columns of text. The portion of each line that appears
after the tab character is left justified into a second column. The LINE_TAB_SEP parameter defines
the amount of space between the two columns of text (the amount of space between the end of the
widest line in the first column and the beginning of the second column). This parameter, like all
spacing parameters, is specified in inches.

300

MediaRich CORE 6.2 • Programmer's Guide

Proof Sheet Image Lines
The <IMAGELINE> enclosing tag is used to specify an image line within a block. To be useful, this tag
always contains exactly one <FILE> tag which points to the image to be included at that point in the
Proof Sheet.

The following parameters can be applied to an image line to effect its size and placement:

Parameter tag Description

IMAGE_DPI Specifies the minimum image DPI for the image (float)
The image is first reduced in size as necessary to fit it properly within its area
of the page. If, after this size reduction, the image’s resolution is smaller than
the specified minimum DPI, the image’s size is further reduced to force it to
this minimum DPI.
This parameter is primarily used when the resulting PDF is going to be
printed, to insure that the image has enough resolution to look good when
printed.
Note: Images are never scaled up in size. That is, they never appear at a lower
resolution than their native resolution (usually 72 DPI).

LINE_JUSTIFY Specifies the line justification (string)
Valid values are LEFT, CENTER, or RIGHT.

Vertical spacing between lines

The LINE_SPACING parameter is used to define the amount of space between each line in a block.
This parameter is interpreted in inches.

Proof Sheet Input Examples
The following example specifies the content for a single Grid Block consisting of an image followed by
three lines of text:
<BLOCK>

<PARAMS>

<LINE_JUSTIFY>Left</LINE_JUSTIFY>

</PARAMS>

<IMAGELINE>

<FILE>c:\Library\Images\comstock/00015650.jpg</FILE>

</IMAGELINE>

<TEXTLINE>

<TEXT>Original No.: 2044561</TEXT>

</TEXTLINE>

<TEXTLINE>

<TEXT>Item Name: Open Range Special</TEXT>

</TEXTLINE>

301

CHAPTER 7 MediaRich Proof Sheet Generator

<TEXTLINE>

<TEXT>Original File Name: 00015650.jpg</TEXT>

</TEXTLINE>

</BLOCK>

The example renders the following block within the Grid Blocks area of the page:

The following example specifies the content for a Header area. It defines the Left and Right blocks,
but does not specify the Center block. It specifies a single font face and size that applies to the entire
Header area:
<HEADER>

<PARAMS>

<FONT_FAMILY>Arial</FONT_FAMILY>

<FONT_SIZE>12</FONT_SIZE>

</PARAMS>

<LEFT>

<TEXTLINE>

<TEXT>Open Range Special Shoot 7/24</TEXT>

</TEXTLINE>

<TEXTLINE>

<TEXT>Photographer: John Smith</TEXT>

</TEXTLINE>

</LEFT>

<RIGHT>

<PARAMS>

<LINE_JUSTIFY>RIGHT</LINE_JUSTIFY>

</PARAMS>

<TEXTLINE>

<TEXT>Date Printed: {TODAY}</TEXT>

</TEXTLINE>

<TEXTLINE>

<TEXT>Page {PAGE} of {PAGES}</TEXT>

302

MediaRich CORE 6.2 • Programmer's Guide

</TEXTLINE>

</RIGHT>

</HEADER>

This renders the following header at the top of the page:

The following example illustrates a Body section that displays four images, with a line of text below
each image indicating the image’s file name. A single LINE_JUSTIFY parameter is specified so that
each image appears in the center of its area of the page, and each text label appears centered below
its image.
<BLOCKS>

<PARAMS>

<LINE_JUSTIFY>Center</LINE_JUSTIFY>

</PARAMS>

<BLOCK>

<IMAGELINE>

<FILE>C:\MyImages\Flower.jpg</FILE>

</IMAGELINE>

<TEXTLINE>Flower.jpg</TEXTLINE>

</BLOCK>

<BLOCK>

<IMAGELINE>

<FILE>C:\MyImages\Dog.jpg</FILE>

</IMAGELINE>

<TEXTLINE>Dog.jpg</TEXTLINE>

</BLOCK>

<BLOCK>

<IMAGELINE>

<FILE>C:\MyImages\Chair.jpg</FILE>

</IMAGELINE>

<TEXTLINE>Chair.jpg</TEXTLINE>

</BLOCK>

<BLOCK>

<IMAGELINE>

<FILE>C:\MyImages\Clown.jpg</FILE>

</IMAGELINE>

<TEXTLINE>Clown.jpg</TEXTLINE>

</BLOCK>

</BLOCKS>

303

CHAPTER 7 MediaRich Proof Sheet Generator

Generating Custom Images for the Proof Sheet
As an alternative to using existing images for the proof sheet grid blocks, you can generate the
images so that they are sized specifically for the proof sheet. This provides the ability to create a
proof sheet for a set of images using a specific DPI for all of the images in the PDF document.

You can do this by creating a MediaRich script that includes a special usage of the generate()
method. When the generate()method is passed a file name in its second parameter that ends in
“.xml”, it does not produce a PDF file. Instead, it computes a size for each image in the Proof Sheet. If
images are provided at these sizes when the Proof Sheet is rendered, all images in the sheet are a
consistent DPI. This size information is returned as a modified version of the passed in Proof Sheet
Specification XML document, saved to disk at the path passed in the second parameter to the
method. This new document is a copy of the original document, with image size tags added to each
of the <IMAGELINE> tags.

The following is an example of the XML file generated by the generate()method:
<?xml version="1.0" encoding="UTF-8"?>

<PROOFSHEET>

<BLOCKS>

<BLOCK>

<IMAGELINE>

<WIDTH>121</WIDTH>

<HEIGHT>181</HEIGHT>

<FILE>c:\Library\Images\comstock/
015650.jpg</FILE>

</IMAGELINE>

</BLOCK>

……

</BLOCKS>

</PROOFSHEET>

To use this feature, a MediaScript script first calls generate() to compute the image sizes and
return a new XML document containing them. The script then reads the XML file to extract the
proper size for each image, and pre-processes the source images to the sizes indicated by that
document. Finally, it calls generate() a second time to actually render a PDF document, this time
passing themodified XML document as the first parameter.

304

305

MediaRich CORE 6.2 Programmer's Guide

CHAPTER 8

MediaRich Hot Folders

306

TheMediaRich Hot Folders mechanism allows batch processing jobs to be initiated by copying
sourcemedia files into a specific directory that MediaRich is monitoring. When files are dropped into
a Hot Folder, MediaRich processes the files according to the one or more scripts associated with that
Hot Folder. After processing, the original files are either moved to a "processed" directory or deleted.

The Hot Folder mechanism supports some conventions as to where the results of processing are
placed and how errors are reported, but the Hot Folder script is free to write results and status
information to any location accessible by MediaRich.

Chapter summary

“Working with Hot Folders” on page 307

“Hot Folder Script Structure” on page 310

“Hot Folder Script Programming” on page 312

MediaRich CORE 6.2 • Programmer's Guide

Working with Hot Folders

MediaRich looks for Hot Folders below preconfigured Hot Folder Root directories. Any number of
Hot Folders can be created below any of these Hot Folder Root directories. These Hot Folder areas
can exist on any filesystem accessible to MediaRich. They will often be placed on network accessible
filesystems so that batch processing can be initiated from workstations on the network by mounting
that same filesystem and dropping media files into the Hot Folders defined there.

The Hot Folder mechanism provides the following services to theMediaScript scripts that determine
what a specified Hot Folder will do when files are dragged into it:

• Ability to define "pre" and "post" operations that are run prior to and after a batch of files is
processed.

• Access to the location of each file to be processed
• Access to standard output locations
• Standard mechanism for reporting errors and for writing out diagnostic information
• Ability to send email messages to report errors and/or job success, and to attach results to such

email messages as enclosures.
• Mechanism for retaining original files or for deleting them after the job completes

Defining Hot Folder Root Directories
Define Hot Folder Root directories using theMediaRich CORE Administration tool. When you open
this tool and log into the server to be configured, stop the server if necessary, and then click the
Configure… button to display the configuration dialog and select the Hot Folder Roots tab.

This tab displays currently defined Hot Folder Roots and allows for adding new roots and editing
existing ones. After you use the tool to modify the Hot Folder Roots configuration, start the server.

Defining a Hot Folder
After the Hot Folder root directories are configured, you can define any number of hot folders.
Generally, you create a separate Hot folder for each type of automated processing that you to put
into place.

To define a Hot Folder:

1. Create a directory somewhere below an existing Hot Folder Root directory.

2. Create one or moreMediaScript script files in that directory, named appropriately.

Warning: As soon as these first two steps are complete, MediaRich will start processing files
with this Hot Folder. You must ensure that there are not any other "processable" files in this
folder when you create the first script file or MediaRich will immediately attempt to process
those files.

3. Edit each script file to define the operation(s) that the Hot Folder will perform.

307

CHAPTER 8 MediaRich Hot Folders

The following sections provide detailed information about creating these script files.

Naming MediaScript Script Files

Two conventions must be followed when naming theMediaRich scripts that define a Hot Folder
operation. First, the script namemust end with ".ms", which is the standard MediaScript file
extension. Second, the first character of the namemust be "^" to designate it as a non-processable
file.

The following are examples of correct MediaScript script file names:

• ^Scale320x240.ms
• ^script.ms
• ^blahblah.ms

The following are examples of incorrect MediaScript script file names:

• Rotate90.ms (does not start with "^")
• ^yoyo.txt (does not end with ".ms")

Processable Hot Folder Files

A processable is any file that is not specifically ignored by the Hot Folder mechanism. The Hot Folder
mechanism ignores any file or directory at the top level of a Hot Folder with a name that starts with a
"^" (caret) character. This naming scheme is used by the Hot Folder mechanism itself to place control
files and directories within the Hot Folder that it does not want processed. This is why the script files
for the Hot Folder must have names that start with "^". This makes it clear that the script file itself is
not processed as an input file. The Hot Folder user can make use of this naming feature to place
other files in the Hot Folder that will be ignored by MediaRich.

Given the Hot Folder at the path "C:/Hot Folders/My Hot Folder", the following are some examples
of processable files:

• C:/Hot Folders/My Hot Folder/horse.gif
• C:/Hot Folders/My Hot Folders/animals/pig.jpg
• C:/Hot Folders/My Hot Folders/animals/birds/parrot.tif

The following are examples of non-processable files:

• C:/Hot Folders/My Hot Folder/^script.ms
• C:/Hot Folders/My Hot Folder/^dont_process_these/whale.jpg
• C:/Hot Folders/My Hot Folder/^hiding/animals/dog.tga

As these examples imply, any level of file and directory nesting can exist in the files that are dragged
into a Hot Folder. The Hot Folder mechanism makes it easy for the Hot Folder script to preserve
these nested relationships in the output that it generates, but the script could also flatten the
hierarchy in the output if it is designed to do so.

308

MediaRich CORE 6.2 • Programmer's Guide

The Hot Folder Processing Sequence

When a Hot Folder is defined, Hot Folder processing is "triggered" whenever one or more
"processable" files are copied into it and no additional changes to the contents of the Hot Folder
occur within about ten seconds.

When a Hot Folder triggers, the following occurs for each script in the hot folder:

1. A batch ID is assigned to this batch of files.

To determine the batch ID, MediaRich looks for a file named "^nextBatchId" in the Hot Folder. If
this file exists, MediaRich reads it to determine the next batch ID. If no such file exists, a batch ID
of "1" is used. In either case, the next batch ID to use is written into the "^nextBatchId" file. This
means that the next batch ID to be used for a Hot Folder job can be specified by deleting the
^nextBatchId file and its corresponding numbered folders in the ^Processed and ^Results
folders.

2. The "processable" files, including any directory hierarchy in which they are contained, aremoved
to the directory "^Processed/<batch ID>" directory within the Hot Folder, where <batch ID> is
replaced with the batch ID determined in step 1.

3. The "hf_pre" function is called in the Hot Folder script file.

4. The "hf_file" function is called repeatedly, once for each "processable" file.

5. The "hf_post" function is called.

6. If the script file has specified that email should be sent either to report errors or to provide
successful job completion notification and/or results, the email is sent.

7. If the "hf_post" function requests that the original files be deleted, those files are deleted.

Error reporting

If errors occur during processing, they are reported in a text file named "<batch ID>_Errors" that is
placed in the "^Results" directory, where <batch ID> is replaced with the batch's ID.

Multiple Script Files in a Single Hot Folder

There are two reasons for placing multiple script files in a single Hot Folder:

• Convenience – If you have a collection of simple scripts that perform single actions, you can easily
build Hot Folders that perform a combination of these single actions by copying the script file for
each action into the Hot Folder.

• Parallelism – A single invocation of a script will always run on a single processor. If it performs
multiple actions, those actions occur in a serial fashion and do not make use of spare processor
resources. By breaking up a single script into multiple smaller scripts, each of those scripts can run
simultaneously, possibly making better use of available processor resources.

If multiple script files exist in a Hot Folder, step 2 of the processing sequence is only performed for
the first script. Additional scripts refer to the source files in the location determined by the Batch ID
of the first script.

It is not possible to delete the original files when processing multiple script files. This is due to the fact
that one of the script files must be responsible for deleting the originals, but that script has no way of

309

CHAPTER 8 MediaRich Hot Folders

waiting to be sure that the other scripts have run to completion before doing the cleanup. If this is a
problem, you can use a second mechanism called "Phasing" to accommodate parallelism for a script
while avoiding this issue. For information on Phasing, refer to the section called "Processing in
Multiple Phases" later in this document.

Standard Hot Folder Output Locations

There are two standard output locations that are computed and made available for use by a Hot
Folder script. The first location is called "Shared" and the second location is called "PerBatch". A
script can use either of these locations for output, or save output to another location according to
your custom requirements.

Shared

The "Shared" output location is common to all batches of files processed by the Hot Folder. That is, if
a Hot Folder writes results to the Shared Location, one batch job can overwrite the results of a prior
batch job if it writes files with the same names. The "Shared" output location is the directory named
"^Results" at the top level of the Hot Folder.

PerBatch

The "PerBatch" output location is a subdirectory named with the batch ID within the "^Results"
directory; for example, if the batch ID is 24, the "PerBatch" output location is "^Results/24". Using
the "PerBatch" output location ensures that the results for each batch job are kept separate.

Hot Folder Script Structure

AHot Folder Script is what determines the operations that a Hot Folder will perform on the files
dragged into it. A Hot Folder script always has a file name of the form "^XXX.ms", where XXX can be
replaced by any valid file name characters. The basic structure of a Hot Folder script file looks similar
to the following:
// HF_PARAM1 = Param Value #1

// HF_PARAM2 = Param Value #2

// HF_PARAM3 = Param Value #3

function hf_pre(context)

{

}

function hf_file(context, phase)

{

}

function hf_post(context)

{

310

MediaRich CORE 6.2 • Programmer's Guide

}

Important: Only the hf_file function is required. The other parts of this structure are
optional. For more information, see “Hot Folder Script Functions” on page 311.

Comment and blank lines

Comment lines can appear anywhere in the script file, and are simply ignored. Comment lines start
with "//"; that is, with two forward slash characters. Blank lines aremeaningless as well, except that a
blank line can signal the end of the static parameter section as described in the preceding section.

Hot Folder Script Parameters
AHot Folder script file starts with zero or more static parameter definitions. A static parameter
definition consists of a comment line that has the following structure:
// HF_<param name> = <param value>

These definitions associate parameter names with parameter values. These values can be referenced
by the script code via their names. This mechanism provides a way to allow a script to be clearly
configured without an experienced developer having to change values in the code itself.

All script static parameters must be placed at the top of the script file, prior to the first line that does
not start with "//". Any parameter definitions that appear after the first non-"//" line is ignored
(treated like a simple comment line).

Hot Folder Script Functions
There are three functions used within a Hot folder script:

hf_pre

This function is optional. If it exists, it is called once prior to processing each individual file in a batch.
It is passed a handle to the Hot Folder Context object (see “Hot Folder Script Programming” on
page 312). The hf_pre function can be used to do any initial preparation that is required before files
are actually processed.

hf_file

This function is required. It is usually called once for each file to be processed. It is passed a handle to
the Hot Folder Context object (see “Hot Folder Script Programming” on page 312) as well as a string
indicating the current "Phase." In most cases, the Phase parameter can be ignored and need not
even be defined. This function defines the processing that is performed on each file to be processed.

hf_post

This function is optional. If it exists, it is called once after processing each individual file in a batch. It is
passed a handle to the Hot Folder Context object (see “Hot Folder Script Programming” on

311

CHAPTER 8 MediaRich Hot Folders

page 312). This function can be used to do any post processing that is required after the files are
processed.

Hot Folder Script Programming

The Hot Folder Context object is the programming interface to the Hot Folder system. The code in
the three functions abovemake calls on this object to obtain all the information necessary to
process files and control the Hot Folder mechanism.

There are basic features supported by the Hot Folder Context object, which are all that are needed to
implement basic Hot Folder operations. There are also some advanced features of the Hot Folder
mechanism that can be accessed via this object.

A Simple Hot Folder Script
This Hot Folder script example creates a TIFF thumbnail for each input file. The size of the thumbnail
can be changed by modifying the HF_THUMBNAIL_WIDTH parameter at the top of the script. The
results are written to a per-batch output directory. The HF_DELETE_ORIGINALS parameter controls
if the original files are deleted or not after processing.

If one or more errors occur, an email message is sent to Joe, Steve, and Jane. If no errors occur, tan
email is sent only to Steve and Jane.
// HF_ERROR_MAILLIST = joe@somecompany.com

// HF_RESULTS_MAILLIST = steve@somecompany.com, jane@somecompany.com

// HF_THUMBNAIL_WIDTH = 128

// HF_DELETE_ORIGINALS = true

function hf_file(context)

{

// Load the source image

var image = new Media();

image.load(name @ context.getSourcePath());

// Get the thumbnail width parameter value

var width = context.getParameter("HF_THUMBNAIL_WIDTH");

// Make a thumbnail

image.scale(xs @ width, constrain @ true);

// Save the result to the PerBatch output directory. Name the

// resulting file the same as the source file, but with a TIFF extension.

image.save(name @ context.getPerBatchResultPathNoExt() + ".tif");

}

312

MediaRich CORE 6.2 • Programmer's Guide

function hf_post(context)

{

context.setDeleteOriginals(context.getParameter("HF_DELETE_ORIGINALS") == "true");

}

Hot Folder File Locations
The function hf_file function is a required function and requires both a source and destination
location for the processed files.

Retrieving the source file location

The code in the hf_file function always requires the location of the source file to process. The full
path to the source file is obtained by calling the context getSourcePath()method. The following is
an example:
var sourcePath = context.getSourcePath();

Retrieving the destination file location

If the code in the hf_file function should write the results of processing a file to one of the
standard locations, it can call one of the following methods for the context object:

• getSharedResultsDir() - Returns the full path of the Shared output directory.
• getSharedResultPath() - Returns the full path to a file in the Shared output directory with

the same name as the input file.
• getSharedResultPathNoExt()- Returns the full path to a file in the Shared output directory

with the same name as the input file, but with the file extension removed.
• getPerBatchResultsDir() - Returns the full path of the PerBatch output directory.
• getPerBatchResultPath() - Returns the full path to a file in the PerBatch output directory

with the same name as the input file.
• getPerBatchResultPathNoExt()- Returns the full path to a file in the PerBatch output

directory with the same name as the input file, but with the file extension removed.

Accessing Hot Folder Static Parameter Values
The values of the static parameters at the top of a script file can be accessed with the context
getParameter()method. This method takes a single string parameter that indicates the name of
the parameter to retrieve, such as the following example:
// HF_WIDTH = 512

…

var width = context.getParameter("HF_WIDTH");

313

CHAPTER 8 MediaRich Hot Folders

Deleting the Original Files
By default, the original files that were copied to the Hot Folder are retained after the job completes.
The script can, however, specify that the original files should be deleted after processing is
completed. It does this in the hf_post function by calling the context setDeleteOriginals()
method. This method takes a single Boolean parameter that indicates if the originals should be
deleted. The following is an example of a complete hf_post function that performs this function:
function hf_post(context)

{

context.setDeleteOriginals(true);

}

Sending Email Messages
Email messages can be sent by a Hot Folder job to indicate success or failure of the job. Two static
parameter values placed at the top of the script file determine what email is sent. These static
parameters are the following:

• HF_ERROR_MAILLIST - A comma separated list of email address to send email to only if errors
occur.

• HF_RESULTS_MAILLIST - A comma separated list of email addresses to send email to indicating
the success or failure of the job.

If one or more errors occur during job processing, email is sent to the addresses on both of the lists
described above. This email includes the specifics of each error that occurred.

If no errors occur, email is sent only to the addresses on the HF_RESULTS_MAILLIST list.

Advanced Hot Folder Script Programming
Beyond the basic processing, the Hot Folder context object supports some additional methods used
for more advanced functionality. You can incorporate these scripting techniques and methods to
maximize your processing information and manage your Hot Folder jobs.

Multiple Phase Processing

A single call to the hf_file function will always be performed by a single processor. If a single script
performs multiple operations on a single input file, and those operations could be performed in
parallel, performing those operations in a single call to hf_file does not make the best use of
available processing resources.

To improve upon this situation and improve a single script's ability to process multiple operations in
parallel, a Phasing feature available. Phasing causes the hf_file function to be called multiple
times for a single input file. Each such call can be executed on a separate processor, allowing those
calls to be performed in parallel.

To definemultiple phases in a script, a static property named HF_PHASES is added to the top of the
script. The value of this property is a comma separated list of phase names. These names are

314

MediaRich CORE 6.2 • Programmer's Guide

arbitrary. The hf_file function will be called once for each specified phase name. The phase name
associated with a particular call to hf_filewill be passed as the second parameter in that call,
allowing the hf_file function to differentiate between the different phases.

The following is a simple example of a three-phase script, which writes out the input image in three
different output formats. The three save functions can be performed in parallel when processor
resources allow:
// HF_PHASES = jpeg, tiff, tga

function hf_file(context, phase)

{

var image = new Media();

image.load(name @ context.getSourcePath());

switch (phase)

{

case "jpeg": image.save(name @ context.getPerBatchResultsDir() + "/result.jpg");
break;

case "tiff": image.save(name @ context.getPerBatchResultsDir() + "/result.tif");
break;

case "tga": image.save(name @ context.getPerBatchResultsDir() + "/result.tga");
break;

}

}

Hot Folder Logging

The Hot Folder context object provides support for logging of script processing errors and other
information.

Errors

Errors are automatically logged when an error occurs in a MediaRich function, such as load() or
save(). It is often the case, however, that the script logic determines that something is wrong and
want to specifically log an error. How this is done depends on the desired behavior. If the script
should exit at the point of the error, it can simply throw an exception, just as it would in any other
MediaRich script. If, however, the script should continue after logging the error, it can use the
logError()method in the context object. This method takes a single string that is an error
message describing the error to be logged.

The following is an example of exiting on an error:
if (width > 1024)

{

throw "Thumbnails can be no larger than 1024 pixels wide";

}

In this next example, the script recovers after placing a message in the error log:
if (width > 1024)

{

315

CHAPTER 8 MediaRich Hot Folders

context.logError("Thumbnails can be no larger than 1024 pixels wide");

width = 1024;

}

Debugging or other non-error information

It is often desirable to log information to a log file without that information being considered an
error. This can be used during script debugging, or to provide information to the Hot Folder user
about what was done during processing. Amethod of the context object named logInfo() is
provided for this purpose. This method logs to a file named "^Results/<batch ID>_Info", where
<batch ID> is replaced with the batch ID of the job.

The following is an example of logging information to the job Info file:
context.logInfo("Saving to file " + context.getPerBatchResultPathNoExt() + ".tif");

If information is logged in this manner, and email messages are sent by the job, the text of those
messages will include the logged information.

Sending Result File Information in Email Messages

It is often desirable to explicitly list the result file locations in the email that is sent by the job. To do
this, you could use the logInfo()method. As a convenience, a method on the context object
named logResults() is provided specifically for this purpose. This method takes a single string,
which is interpreted as a file path. File paths passed to this function are collected and summarized in
the email messages, indicating that these paths are the results that were generated by the Hot
Folder job.

Sending Results as Email Attachments

The logAttachment()method of the context object allows result files to be sent as attachments in
the email messages that are sent by the job. This method takes a single string parameter that must
be the path to a file. If the path passed to this method refers to an existing file (often one just
generated), then that file is added as an attachment to any emails that are sent on behalf of the job.

Referencing Available Data in the Context Object

The following are a few other methods are available on the context object that retrieve useful
information:

• getBatchId() - returns the batch ID of the current job
• getHotFolderPath() - returns the path of the Hot Folder itself
• getSourceRelativePath() - similar to getSourcePath(), but returns a partial path to the

source file that is relative to the Hot Folder directory
This returns only the file name of the source for files that were added directly to the top-level of
the Hot Folder (that is, were not in a subdirectory).

• stoString() - returns a report of all of the information that the context object contains
This method is often helpful for debugging.

316

317

MediaRich CORE 6.2 Programmer's Guide

CHAPTER 9

MediaRich Color Management

318

MediaScript uses the ICC (International Color Consortium)methodology for color management,
where the color characteristics of each color reproduction device to be used is stored in a color
profile.

This chapter explains the basics of color management and using MediaRich and theMediaScript
scripting language to ensure accurate RGB and CMYK color conversions.

Chapter summary

“MediaRich Color Management” on page 318

“MediaScript Color Management Functions” on page 320

“Accuracy and Reversibility of Color Conversions” on page 322

“Common Color Management Questions” on page 323

MediaRich Color Management

MediaScript uses the ICC (International Color Consortium)methodology for color management,
where the color characteristics of each color reproduction device to be used is stored in a color
profile. Converting an image from one device to another involves setting up a color transformation
between the source profile and the destination profile. This transformation is then used to convert
each pixel in the image from the source device to the destination device. Detailed information
regarding ICC color management can be found at the ICC Web site.

Colorspaces
Different color reproduction devices use different types of color representation (colorspaces) for
color reproduction. Most color reproduction devices fall into three basic categories. Each category is
represented by a different image colorspace:

MediaRich CORE 6.2 • Programmer's Guide

• Grayscale colorspace devices use a single intensity corresponding to the darkness/lightness
desired. In MediaScript, a grayscale value of 0 represents black, while a grayscale level of 255
represents white.

• RGB colorspace devices (typically monitors) use red, green, and blue intensities which combine to
form the color. The value combined additively; when all three components are 0, the color is the
darkest the device can represent; and when all three components are 255, the color is the
brightest.

• CMYK colorspace devices (typically printers) use the intensity of the cyan, magenta, yellow, and
black inks to represent the color. When no ink is used, (all components 0), the color is the color of
the paper. When themaximum intensities are used, the color is at its darkest. Note that most
printers cannot print using themaximum value of all four channels.

Converting colors between these different types of devices fundamentally changes the nature of the
image data. For example, the color white on an RGB device is typically represented by setting all
three channels to 255. However, on a CMYK device, white is typically represented by setting all four
channels to 0. It is therefore important to knowwhich colorspacein which an image is represented.

Note: CMYK color values are handled differently than RGB, especially in relation to pad,
foreground and background colors, for example. For instance, in CMYK white is represented as
0x00000000, while in RGB it is represented as 0xffffff.

Color Gamut
Different devices may not be able to reproduce the same range of colors. The range of colors that a
given device can reproduce is called its gamut. RGB devices typically have a significantly different
gamut than CMYK devices. Therefore, converting an image from an RGB colorspace to a CMYK
colorspace or vice-versa typically involves a loss of information as different colors in the source
colorspace could map to the same color in the destination colorspace. For this reason, it is advisable
to keep the number of color conversions to a minimum.

White Point Mapping
The color considered to be “white” on each devicemay not be the same. What is considered “white”
for CMYK devices depends on the paper being used, while “white” on a monitor depends on the
maximum intensities of the red, green, and blue channels. Typically, monitors have a “white” that is
noticeably bluer than paper.

However, when an image displayed on the screen is printed, one does not typically expect the image
to be printed on a blue background. Instead, the “white” of themonitor is mapped to the “white” of
the printer, such that areas displayed as “white” on themonitor are printed with no ink. This is
termed white point mapping.

Color Profiles
Color profiles for a given device can typically be obtained from the devicemanufacturer, or may
come installed on the operating system. Additionally, software is available that can be used to

319

CHAPTER 9 MediaRich Color Management

characterize a device and create a color profile. The TIFF, JPEG, EPS, and Photoshop image formats
have the ability to store the color profile that describes the image contents along with the image.
This is an embedded profile.

MediaScript reads embedded profiles from these image formats and will preferentially use these
profiles as the source for color transformations. Additionally, MediaScript has the ability to save the
embedded profile along with the image data.

Rendering Intent
Because of differences in color gamut and white point between differing devices, building a
transformation between devices requires the user to specify how to handle gamut and white point
mapping. This is specified as the rendering intent. The ICC provides four different intents.

Perceptual

This intent specifies that the white points of the differing device bemapped, and that color
differences for out of gamut colors be preserved. This implies that some compression of colors that
lie inside both gamut be performed to make room for different out-of-gamut colors. This is usually
the best rendering intent for complex images such as photographic images.

Relative Colorimetric

This intent specifies that colors that lie inside the common color gamut of both devices be
reproduced exactly. Colors that are outside of the destination devices color gamut aremapped to
the gamut boundary. This means that many out of gamut colors may bemapped to the same color
on the destination device. This intent is useful when it is known that the colors in the imagemainly lie
inside the gamut of both the source and the destination device.

Absolute Colorimetric

This intent is used when you want the colors on the destination device to be colorimetrically equal to
that on the source device. No white point mapping is done. This intent is rarely used for image
processing.

Saturation

For certain types of images (notably business graphics), it is more important to preserve the
saturation of the color than the color itself. The saturation intent is provided to handle this case.

MediaScript Color Management Functions

The color management functions provided by MediaScript can be divided into two categories:

• Image conversion
• Profile management

The image conversion functions are all members of theMedia object, while the profile management
functions are provided by the IccProfile object.

320

MediaRich CORE 6.2 • Programmer's Guide

Image Conversion Methods
The image conversion methods are all member functions of theMedia object.

• The colorCorrectmethod is the primary method used for converting between a source device,
represented by the source profile, and a destination device represented by the destination
profile.

• The colorToImagemethod provides a mechanism for converting a single color from a specified
source to the image colorspace.

• The colorFromImagemethod converts a single color from the image colorspace to a specified
destination.

• The embeddedProfilemethod tests an image to see if it has an embedded profile.
• The getEmbeddedProfileNamemethod returns the name of the embedded profile.
• The saveEmbeddedProfilemethod will save the embedded profile to a file.
• The setSourceProfilemethod sets the embedded profile for an image to the specified profile.

Media object

The load()method of theMedia object automatically loads any embedded source profiles for
supported file formats.

The save()method can optionally embed the color profile associated with an image along with the
image data for supported file formats. By default, embedded profiles are always saved for CMYK
images, but not for RGB images. This default behavior is controlled by the
ColorManager.DefaultEmbedProfile property in the global.properties file.

Profile Management Methods
With the exception of the load() and save()methods of theMedia object, the profile
management methods are contained in the IccProfile link object.

IccProfile object

Use the IccProfile object constructor to construct an IccProfile object, given either a Media object
that has an embedded profile or a path to a profile on disk. An IccProfile object can be used as a
source or destination profile for all color management methods that take profiles as arguments,
including the following:

getPath()

The getPathmethod returns the path to the profile on disk or the empty string if the object was
constructed from an image.

getName()

The getNamemethod returns the profile name.

321

CHAPTER 9 MediaRich Color Management

getClass()

The getClassmethod returns the profiles class. The class generally describes the type of the device
for which the profile is intended.

getColospace()

The getColorspacemethod returns the colorspace of the device characterized by the profile. This
is the colorspace of the source image if the profile is used as the source, and the colorspace of the
destination image if the profile is used as the destination.

getConnectionspace()

The getConnectionspacemethod returns the common colorspace used to construct transforms
using this profile.

list()

The listmethod is a static method that returns an array of profile names that match specified class
and colorspace criteria. This method may be used for example to return a list of all Monitor profiles
that have an RGB colorspace.

SourceProfile Arguments
Themethods colorCorrect, colorFromImage, colorToImage, and setSourceProfile all
take a SourceProfile argument, a DestProfile argument, or both.

There are three ways to specify these profiles:

• Specify the path to a profile on disk. By default this path is relative to the color: virtual file system
which includes both theOriginals/Profiles directory in the Shared files folder and the system color
profile directory;

• Use an IccProfile object. These object may be constructed either from a path to a profile on disk,
or from an image with an embedded profile;

• Use the default profiles by specifying the string rgb for the default RGB colorspace profile, or
cmyk for the default CMYK colorspace profile. These default profiles are defined in the
global.properties file.

Accuracy and Reversibility of Color Conversions

The quality of the color reproduction of an image converted from one colorspace to another
depends on the following factors:

• The overlap between the gamut of the source device and the gamut of the destination device
• The quality of the color profile used (such as the number of samples used to generate the

conversion transform)
• The accuracy of the color profile
• The rendering intent selected

322

MediaRich CORE 6.2 • Programmer's Guide

Devices with similar gamuts will produce the smallest color distortion. Typically, converting from the
colorspace of onemonitor to that of another monitor results in no noticeable loss of color quality.
However, converting from an RGB colorspace to a CMYK colorspace will typically result in changes in
the color from the original. This loss is caused by the fact that monitors typically have larger gamuts
than printers. For photographic images, this loss is typically small becausemost naturally occurring
colors can be produced equally well on monitors and printers. For computer-generated images, the
loss is typically larger since there aremany colors representable on a monitor that cannot be
achieved with ink on paper.

Printer profiles are usually constructed with a large number of sample points for converting colors to
the printers colorspace. However, to make the profiles reasonably small, far fewer sample points are
usually provided for converting from the printers colorspace. Therefore, color conversions using
printer profiles as the source colorspace should be avoided whenever possible.

Because of the inherent inaccuracy in the color conversion process, converting from one colorspace
to another and back should also be avoided where possible. Images for processing should be
converted to a common colorspace, processed, and converted to the destination. Choice of the
common colorspace depends on the colorspace of the images involved, the type of images involved,
the quality of the color profiles, the destination colorspace, and the operations to be performed.

Common Color Management Questions

How do I color correct RGB images that do not have embedded profiles?

Specify a source profile to the colorCorrect function. This source profile is only be used for images
that do not have an embedded source profile. If you specify the string rgb as the source profile for
colorCorrect, the default RGB profile specified in the global.properties file is used for any image that
lacks a source profile.
image.colorCorrect(SourceProfile @ "rgb",
DestProfile @ myPrinterProfile, Intent @ "RelativeColorimetric");

How do I composite an RGB image on to an CMYK image?

You must first convert the RGB image to the CMYK colorspace of the image. The simplest method for
performing this conversion is to construct an IccProfile object from the CMYK image. This IccProfile
object may then be used as the destination profile for the conversion.

For example, suppose that the CMYK image is contained in a Media object named cmykImage, and
the RGB image is contained in a Media object named rgbImage. The following script performs the
composite:
cmykProfile = new IccProfile(cmykImage);

rgbImage.colorCorrect(SourceProfile @ "rgb",
DestProfile @ cmykProfile, Intent @ "Perceptual");

cmykImage.composite(source @ rgbImage);

Note: The new IccProfile(cmykImage)method throws an exception if cmykImage does

323

CHAPTER 9 MediaRich Color Management

not contain an embedded profile.

When I try to construct an IccProfile object, I get the “Not a function type” error. What’s
wrong?

The IccProfile object is a MediaScript link object. To use the IccProfile object when MediaRich is
installed on aWindows server, add the following line at the beginning of your script.
#link <IccProfile.dll>

What’s the best method for color correcting a grayscale image?

To maintain compatibility with previous versions ofMediaRich, grayscale images can be treated in
the samemanner as RGB images. However, this assumes that the default RGB colorspace uses equal
amounts of red, green, and blue to represent gray, and that the transform from Grayscale to RGB is
linear.

If a profile is available for your Grayscale images, better results are obtained by using the Grayscale
profile to color correct the Grayscale image to RGB before processing it as an RGB image.

How do I treat all images as RGB images?

If you are not concerned about precise color conversions, the loadAsRGBmethod is provided as an
add-on to themedia object in the file: Scripts/Sys/media.ms.

This method loads an image, and if the image colorspace is not RGB, it converts the image to RGB
using the embedded profile, default source, and destination profiles defined in the global.properties
file. If the image has an embedded profile, it is used as the source. The following is an example of
using the loadAsRGBmethod:
#include "Sys/media.ms"

image = new Media();

image.loadAsRGB(name @ "myImage.tif");

Now, irrespective of the colorspace of the image stored inmyImage.tif, the image is an RGB image.

Why does a composite() of makeText()-generated CMYK data onto a CMYK background messes
up the anti-aliasing?

First, note that use of the CMYK "black" value 0x000000ff is generally not a good choice because it will
not appear black in Photoshop or any application with a paper-based color profile. You can produce
better results with the following:
text.makeText(font @ "arial", text @ "sample", color @ text.colorToImage(color @
0x000000, sourceProfile @ "rgb", destProfile @ "cmyk"), size @ 42, smooth @ true,
rtype @ "CMYKA");

This uses the default CMYK profile notion of black (actually more like 0xBFADAAE5). If the destination
raster has an embedded profile, it would be even better to use that.

Second, doing a composite with transparencies other than 0 or 255 is usually not a good idea in the
CMYK colorspace. This is becausemost CMYK profiles can not be interpolated linearly as when alpha

324

MediaRich CORE 6.2 • Programmer's Guide

blending RGB or CMYK. Better to convert to RGB colorspace, do the blend, then convert back to
CMYK, since the linear interpolation is generally sufficient for RGB.

325

CHAPTER 10

MediaRich Metadata Support

326

MediaRich CORE provides support for themost popular metadata formats: IPTC, EXIF, and XMP.
MediaRich fully supports loading, saving, and merging IPTC, EXIF, and XMP metadata for JPEG, TIFF,
and Photoshop files. MediaRich supports loading XMP metadata from the following file formats:
Illustrator, InDesign, EPS, GIF, PDF, and PNG. It also supports IPTC metadata extraction for RAW
Camera formats. This metadata is available to the script as a metadata XML document. Detailed
schemas are provided for the EXIF and IPTC documents constructed by MediaRich. The XMP
metadata document conforms to the schema defined by Adobe.

Important: TheMediaRich ECM for SharePoint product currently supports only IPTC and EXIF
metadata for JPEG, TIFF, and Photoshop files.

Chapter summary

“Low-LevelMetadata Interface ” on page 326

“High-Level Support for EXIF, IPTC, and XMP” on page 329

“Common Metadata Methods ” on page 341

“Metadata from AVLowLevel API” on page 346

Low-Level Metadata Interface

Two MediaScript objects provide support for metadata:

• The Media object - provides support for loading and saving metadata along with the image
contents.

• The _MR_Metadata object - provides support for loading and merging just themetadata
contained within the files, without loading the image data.
This allows the scripter to modify themetadata within compressed files without decompressing
and recompressing the image data.

MediaRich CORE 6.2 • Programmer's Guide

Metadata Support in the Media Object
The load command of the Media object loads and attaches EXIF, IPTC, and XMP metadata if the
loadMetadata parameter is specified as true, such as in the following example:
var image = new Media();

image.load(name @ “myimage.jpg”, loadMetadata @ true);

This constructs an XML document for any EXIF, IPTC, or XMP metadata contained in the file and
attaches it to theMedia object. This metadata can be accessed by the scripter using the
getMetadata command of the Media object:
var metaDoc = image.getMetadata(“IPTC”);

This metadata document can be processed and edited. To modify themetadata attached to the
image, use the setMetadatamethod:
image.setMetadata(“Exif”, myExifData);

Finally, use the savemethod to save any metadata attached to the document unless the
SaveMetadata parameter is set to false.
image.save(type @ “jpeg”);

Themetadata names for use with the getMetadata and setMetadatamethods are EXIF, IPTC,
and XMP for the EXIF, IPTC, and XMP metadata documents, respectively. These names are case-
sensitive.

Note: A save() function will embed a color profile for a color profile-supporting format
without explicitly setting saveMetadata to true only when CMYK data is present.

The following code outputs a TIFF and displays the raw XMLmetadata at the console in Mush mode:
#include "sys:/Metadata.ms"

m = new Media();

m.load(name @ "extensis/_DSC1160.NEF", loadMetadata @ true);

m.save(name @ "out/out.tif", saveMetadata @ true);

var meta = m.getMetadata("Exif");

print("Metadata:\n"+meta+"\n");

The following code copies a CameraRaw file containing metadata to theMedia folder. You can run
the script in a browser using this URL:
http://localhost/mgen/mediaRichTest.ms?nc=1

This demonstrates using XML data representing the Exif data to display in the browser, as well as
embedding it in the new image.
#include "sys:/TextResponse.ms"

function main()

{

var m = new Media();

m.load(name @ "read:/<a CameraRaw file containing metadata>", loadMetadata @ true);

m.save(name @ "cache:/2767.tif", saveMetadata @ true);

327

CHAPTER 10 MediaRich Metadata Support

var theXML = m.getMetadata("Exif");

var resultXml = new TextResponse(TextResponse.TypeXml);

resultXml.setText(theXML);

resp.setObject(resultXml, RespType.Streamed);

return;

}

Metadata Support in the _MR_Metadata Object
The _MR_Metadata object supports extracting metadata from supported file formats without
loading the image data. It also supports merging newmetadata into existing files without the need to
interpret or decompress the image data. The _MR_Metadata object has two methods: save and
load. In addition, the _MR_Metadata object can be used as theMediaScript response object
allowing the script to stream back a file with modified metadata.

The _MR_Metadata constructor takes a file name and an optional file type, as illustrated in the
following example:
var metaObj = new _MR_Metadata(“myimage.jpg”, “jpeg”);

The file name specifies the file to be processed. The file type parameter indicates the type of that file.
If the file has a valid extension, the file type can be omitted.

The _MR_Metadata object load command extracts one type ofmetadata from the image as an
XML document. It takes a single string parameter indicating which type ofmetadata to extract. The
three valid values for the parameter are EXIF, IPTC and XMP. The following is an example:
var myExifDoc = metaObj.load(“Exif”);

If the file has a valid extension, the file type can be omitted.

The _MR_Metadata object save command embeds one or more types ofmetadata within the
image file. The parameters for the save command object are exif, iptc, xmp, and name. The file
type of the saved file is always the same as the file type of the original image.
metaObj.save(exif @ myExifDoc, iptc @ null, xmp @ null, name @ “newFile”);

or
var saveObj = new Object();

saveObj.iptc = null;

saveObj.xmp = null;

saveObj.exif = myExifDoc;

saveObj.name = “newFile”;

metaObj.save(saveObj);

If any of the exif, iptc, or xmp parameters are omitted, existing metadata of that type in the file is
transferred to the output file. If any of the exif, iptc, or xmp parameters is specified as null,
existing metadata of that type is omitted in the output. Otherwise, IPTC and XMP data is replaced
using the specified data, and writable EXIF tags are replaced.

Note: The EXIF camera data tags are never replaced.

328

MediaRich CORE 6.2 • Programmer's Guide

The following code will dump metadata as XML:
var data = new _MR_Metadata("tbimages:/metadata/Canada_021.eps",

"eps");

var xmp = data.load("XMP");

print(xmp + "\n");

You can also put "EXIF" and "IPT" in the load() call to get those data types.

High-Level Support for EXIF, IPTC, and XMP

There are two MediaScript objects provided to simplify the tasks of getting and setting individual
metadata items. These objects are provided to support IPTC and EXIF metadata. Each of these
objects has a similar format and provides set<Tag>methods and get<Tag>methods, which set
and get individual metadata fields. <Tag> represents the name of themetadata tag to set or get.

One or more #include lines are required in scripts that call metadata functions:

• For EXIF support: #include “sys:/ExifMetadata.ms”

• For IPTC support: #include “sys:/IPTCMetadata.ms”

• For XMP support: #include “sys:/XMPMetadata.ms”

The following sections describe the general structure and common methods for both the
IPTCMetadata object and the EXIFMetadata object. This is followed by descriptions of the
set<Tag> and get<Tag>methods for the IPTCMetadata and EXIFMetadata objects.

IPTC Metadata Object
Use the following methods to retrieve and set metadata values for IPTC metadata. Refer the schema
(IPTC.xsd) in the /Shared/Originals/Sys folder for the required format for each of the IPTC fields.

Note: The information provided here includes only a brief description. For a complete
description of each IPTC metadata field, consult the IPTC news-photo metadata specification
available at http://www.iptc.org under the title “Digital Newsphoto Parameter Record.”

For the following methods, the notation (string ...) indicates that multiple values may be
specified as arguments to themethod.

Method Description

getVersion() Returns the version field

setVersion(string) Sets the version field

getObjectTypeReference() Returns the object type reference field

329

http://www.iptc.org/

CHAPTER 10 MediaRich Metadata Support

Method Description

setObjectTypeReference
(string)

Sets the object type reference field

getObjectAttribute
Reference()

Returns an array of attribute references

setObjectAttributeReference
(string, ...)

Sets attribute references

addObjectAttributeReference
(string, ...)

Adds an attribute references to the list

setObjectAttributeReference
Array(array)

Sets a group of attribute references from an array

getObjectName() Returns the object name

setObjectName(string) Sets the object name

getEditStatus() Returns the edit status

setEditStatus(string) Sets the edit status

getEditorialUpdate() Returns the editorial update code

setEditorialUpdate(string) Sets the editorial update code

getUrgency() Returns the urgency code

setUrgency(string) Sets the urgency code

getSubjectReference() Returns an array of subject references

setSubjectReference
(string, ...)

Sets subject references

addSubjectReference
(string, ...)

Adds subject references to the list

setSubjectReferenceArray
(array)

Sets a group of subject references from an array

getCategory() Returns the category code

setCategory(string) Sets the category code

getSupplementalCategory() Returns the supplemental category array

setSupplementalCategory
(string, ...)

Sets supplemental categories

330

MediaRich CORE 6.2 • Programmer's Guide

Method Description

addSupplementalCategory
(string, ...)

Adds a value to the supplemental category list

setSupplementalCategory
Array(array)

Sets a group of supplemental categories as an array

getFixtureIdentifier() Returns the fixture identifier code

setFixtureIdentifier(string) Sets the fixture identifier code

getKeywords() Returns an array of keywords

setKeywords(string, ...) Sets keywords

addKeywords(string, ...) Adds keywords to the list

setKeywordsArray(array) Sets keywords from an array

getContentLocation() Gets an array of content location objects - each object has
two properties: ContentLocationName and
ContentLocationCode

getContentLocationName(which) Returns the ContentLocationName subfield of the
ContentLocation tag indexed]

getContentLocationCode
(which)

Returns the ContentLocationCode subfield of the
ContentLocation tag indexed

setContentLocation
(name, code)

Sets the ContentLocation tag to the specified name and
code

addContentLocation
(name, code)

Adds the ContentLocation specified by name and code to
the ContentLocation list

getReleaseDate() Returns the ReleaseDate and ReleaseTime tags as a
MediaScript Date object

setReleaseDate(date) Sets the ReleaseDate and ReleaseTime tags from a
MediaScript Date object

setReleaseTime(string) Sets only the ReleaseTime field

getExpirationDate() Returns the ExpirationDate and ExpirationTime fields
as a MediaScript Date object

setExpirationDate(date) Sets the ExpirationDate and ExpirationTime fields from
aMediaScript Date object

setExpirationTime(string) Sets only the ExpirationTime field

getSpecialInstructions() Returns the SpecialInstructions field

331

CHAPTER 10 MediaRich Metadata Support

Method Description

setSpecialInstructions
(string)

Sets the SpecialInstructions field

getActionAdvised() Returns the ActionAdvised field

setActionAdvised(string) Sets the ActionAdvised field

getReference() Returns an array of Reference object for the Reference field
- each reference object has a ReferenceService,
ReferenceDate, and ReferenceNumber property

getReferenceService(which) Returns the ReferenceService property of the Reference
element indexed

getReferenceDate(which) Returns the ReferenceDate property of the Reference
element indexed by which as aMediaScript Date object

getReferenceNumber Returns the ReferenceNumber property of the Reference
element

setReference(service, date,
number)

Sets the Reference element to the reference specified by
service, date, and number
Note: datemust be aMediaScript Date object.

addReference(service, date,
number)

Adds a Reference element to the list using the specified
service, date, and number.
Note: datemust be aMediaScript Date object.

getDateCreated() Returns the DateCreated and TimeCreated fields as a
MediaScript Date object

setDateCreated(date) Sets the DateCreated and TimeCreated fields from a
MediaScript Date object

setTimeCreated(string) Sets the TimeCreated field

getDigitalCreationDate() Returns the DigitalCreationDate and
DigitalCreationTime fields as a MediaScript Date object

setDigitalCreationDate(date) Sets the DigitalCreationDate and
DigitalCreationTime fields from aMediaScript Date
object

setDigitalCreationTime
(string)

Sets the DigitalCreationTime field

getOriginatingProgram() Returns the OriginatingProgram field

setOriginatingProgram
(string)

Sets the OriginatingProgram field

332

MediaRich CORE 6.2 • Programmer's Guide

Method Description

getProgramVersion() Returns the ProgramVersion field

setProgramVersion(string) Sets the ProgramVersion field

getObjectCycle() Returns the ObjectCycle field

setObjectCycle(string) Sets the ObjectCycle field

getByLine() Returns an array of ByLine objects, each of which contains a
ByLineWriter and a ByLineTitle property

getByLineWriter(which) Returns the ByLineWriter property of the ByLine element
specified

getByLineTitle(which) Returns the ByLineTitle property of the ByLine element
specified

setByLine(writer, title) Sets the ByLine element to the specified writer and title

addByLine(write, title) Adds an element to ByLine for the given writer and title

getCity() Returns the City element

setCity(string) Sets the City element

getSublocation() Returns the Sublocation

setSublocation(string) Sets the Sublocation

getState() Returns the State (Province)

setState(string) Sets the State (Province)

getCountryCode() Returns the CountryCode

setCountryCode(string) Sets the CountryCode

getCountryName() Returns the CountryName

setCountryName(string) Sets the CountryName

getOriginalTransmission
Reference()

Returns the OriginalTransmissionReference

setOriginalTransmission
Reference(string)

Sets the OriginalTransmissionReference

getHeadline() Returns the Headline

setHeadline(string) Sets the Headline

getCredit() Returns the Credit field

333

CHAPTER 10 MediaRich Metadata Support

Method Description

setCredit(string) Sets the Credit field

getSource() Returns the Source field

setSource(string) Sets the Source field

getCopyrightNotice() Returns the Copyright field

setCopyrightNotice(string) Sets the Copyright field

getContact() Returns an array of Contact elements

setContact(string, ...) Sets Contact elements.

addContact(string, ...) Adds Contact elements

setContactArray(array) Sets Contact element from an array

getCaption() Returns the Caption element

setCaption(string) Sets the Caption element

getWriter() Returns an array of writer elements

setWriter(string, ...) Sets Writer elements

addWriter(string, ...) Adds Writer elements

setWriterArray(array) Sets Writer elements from an array

getImageType() Returns the ImageType

setImageType(string) Sets the ImageType

getImageOrientation() Returns the ImageOrientation

setImageOrientation(string) Sets the ImageOrientation

getLanguageIdentifier() Returns the LanguageIdentifier

setLanguage
Identifier(string)

Sets the LanguageIdentifier

The EXIF Metadata Object
The following methods may be used to get and set metadata values for EXIF metadat`a. Please refer
to the schema (EXIF.xsd) in the /Shared/Originals/Sys folder for the required format for each of the
EXIF fields. Note that only a brief description is provided here. For a complete description of each
EXIFmetadata field, please consult the EXIF metadata specification available at http://www.exif.org.

Note: Where possible, the values listed for the following methods are converted into string

334

http://www.exif.org/

MediaRich CORE 6.2 • Programmer's Guide

valued representations as defined in the exif specification.

IFDO Methods

Method Description

getImageDescription() Returns the image description

setImageDescription(string) Sets the image description

getOrientation() Returns the image orientation

setOrientation(string) Set the image orientation

getSoftware() Returns the software description

setSoftware(string) Sets the software description

getArtist() Returns the artist

setArtist(string) Sets the artist

getDateTime() Returns the DateTime field as a MediaScript Date object

setDateTime(date) Sets the DateTime field from aMediaScript Date object

getPhotographerCopyright() Returns the photographer copyright

setPhotographerCopyright(string) Sets the photographer copyright

getEditorCopyright() Returns the editor copyright

setEditorCopyright(string) Sets the editor copyright

getMake() Returns the camera make

getModel() Returns the camera model

getImageWidth() Returns the image width

getImageLength() Returns the image height

getBitsPerSample() Returns the number of bits per sample

getCompression() Returns the compression type

getPhotometric

Interpretation()
Returns the photometric interpretation

getPlanarConfiguration() Returns the planar configuration

getYCbCrSubSampling() Returns the YCbCr sub-sampling

335

CHAPTER 10 MediaRich Metadata Support

Method Description

getYCbCrPositioning() Returns the YCbCr positioning

getXResolution() Returns the horizontal resolution

getYResolution() Returns the vertical resolution

getResolutionUnit() Returns the resolution unit

getWhitePoint() Returns the white point

getPrimary

Chromaticities()
Returns the primary chromaticities

getYCbCrCoefficients() Returns the YCbCr coefficients

getReferenceBlack

White()
Returns the ReferenceBlackWhite value

Method Description

getImageDescription() Returns the image description

setImageDescription(string) Sets the image description

getOrientation() Returns the image orientation

setOrientation(string) Set the image orientation

getSoftware() Returns the software description

setSoftware(string) Sets the software description

getArtist() Returns the artist

setArtist(string) Sets the artist

getDateTime() Returns the DateTime field as a MediaScript Date object

setDateTime(date) Sets the DateTime field from aMediaScript Date object

getPhotographerCopyright() Returns the photographer copyright

setPhotographerCopyright(string) Sets the photographer copyright

getEditorCopyright() Returns the editor copyright

setEditorCopyright(string) Sets the editor copyright

getMake() Returns the camera make

getModel() Returns the camera model

getImageWidth() Returns the image width

336

MediaRich CORE 6.2 • Programmer's Guide

Method Description

getImageLength() Returns the image height

getBitsPerSample() Returns the number of bits per sample

getCompression() Returns the compression type

getPhotometric

Interpretation()
Returns the photometric interpretation

getPlanarConfiguration() Returns the planar configuration

getYCbCrSubSampling() Returns the YCbCr sub-sampling

getYCbCrPositioning() Returns the YCbCr positioning

getXResolution() Returns the horizontal resolution

getYResolution() Returns the vertical resolution

getResolutionUnit() Returns the resolution unit

getWhitePoint() Returns the white point

getPrimary

Chromaticities()
Returns the primary chromaticities

getYCbCrCoefficients() Returns the YCbCr coefficients

getReferenceBlack

White()
Returns the ReferenceBlackWhite value

IFDEXIF Methods

Method Description

getVersion() Returns the EXIF version

setVersion(string) Sets the EXIF version (default is 2.2)

getUserComment() Returns the user comment

setUserComment(string) Sets the user comment

getColorspace() Returns the colorspace

getPixelXDimension() Returns the width

getPixelYDimension() Returns the height

337

CHAPTER 10 MediaRich Metadata Support

Method Description

getComponentsConfiguration() Returns the ComponentsConfiguration value

getCompressedBitsPerPixel() Returns the approx. number of compressed bits per pixel

getRelatedSoundFile() Returns the name of a related sound file

getDateTimeOriginal() Returns aMediaScript Date object for the original date/time

getDateTimeDigitized() Returns aMediaScript Date object for the digitized date/time

getSubSecTime() Returns the sub-second time offset

getSubSecTimeOriginal() Returns the sub-second time offset for the original

getSubSecTimeDigitized() Returns the digitized sub-second time offset

getExposureTime() Returns the exposure time

getShutterSpeedValue() Returns the shutter speed in seconds

getApertureValue() Returns the aperture value as an F-number

getBrightnessValue() Returns the brightness value

getExposureBiasValue() Returns the exposure bias value

getMaxApertureValue() Returns the maximum aperture value as an F-number

getSubjectDistance() Returns the subject distance in meters

getMeteringMode() Returns the metering mode

getLightSource() Returns the light source

getFlash() Returns true if flash was used

getFocalLength() Returns the focal length

getFNumber() Returns the F-number

getExposureProgram() Returns the exposure program

getSpectralSensitivity() Returns the spectral sensitivity

getISOSpeedRatings() Returns the ISO film speed

getOECF() Returns the OECF value

getFlashEnergy() Returns the flash energy

getSpatialFrequencyResponse() Returns the spatial frequency response

getFocalPlaneXResolution() Returns the focal-plane horizontal resolution

338

MediaRich CORE 6.2 • Programmer's Guide

Method Description

getFocalPlaneYResolution() Returns the focal-plane vertical resolution

getFocalPlaneResolutionUnit() Returns the focal-plane resolution unit

getSubjectLocation() Returns the subject location

getExposureIndex() Returns the exposure index

getSensingMethod() Returns the sensing method

getFileSource() Returns the file source

getSceneType() Returns the scene type

getCFAPattern() Returns the CFA pattern

getSubjectArea() Returns the subject area.

getMakerNote() Returns the manufacturer notes.

getCustomRendered() Returns the custom image procesing.

getExposureMode() Returns the exposure mode.

getWhiteBalance() Returns the white balance.

getDigitalZoomRatio() Returns the digital zoom ratio.

getFocalLengthIn35mmFilm() Returns the focal length in 35mm film.

getSceneCaptureType() Returns the scene capture type.

getGainControl() Returns the gain control.

getContrast() Returns the contrast.

getSaturation() Returns the saturation.

getSharpness() Returns the sharpness.

getDeviceSettingDescription() Returns the device settings description.

getSubjectDistanceRange() Returns the subject distance range.

getImageUniqueID() Returns the unique image ID.

339

CHAPTER 10 MediaRich Metadata Support

EXIF GPS Metadata Extraction

MediaRich 4.0 includes newmethods for extracting GPS metadata from the ExifMetadata object.

Method Description

getGPSVersionID() Returns the GPS version ID

getGPSLatitude() Returns the GPS Latitude

getGPSLongitude() Returns the GPS Longitude

getGPSAltitude() Returns the GPS altitude

getGPSTimeStamp() Returns the GPS time stamp

getGPSDateStamp() Returns the GPS date stamp

getGPSSatellites() Returns the GPS satellite information

getGPSStatus() Returns the current GPS status

getGPSMeasureMode() Returns the GPS measurement mode

getGPSDOP() Returns the GPS data degree of precision (DOP)

getGPSSpeed() Returns the GPS speed

getGPSTrack() Returns the GPS track

getGPSImgDirection() Returns the GPS image direction

getGPSMapDatum() Returns the geodetic survey data used by the GPS receiver

getGPSDestLatitude() Returns the latitude of the GPS destination point

getGPSDestLongitude() Returns the longitude of the GPS destination point

getGPSDestBearing() Returns the bearing to the GPS destination point

getGPSDestDistance() Returns the distance to the GPS destination

getGPSDifferential() Returns value to indicate if differential correction is applied
to the GPS receiver

Thesemethods do not take any parameters. The returned values are converted from raw form to a
human-readable friendly form, suitable for direct display to the user.

The following is an example script that demonstrates these GPS metadata methods:
var exif = new ExifMetadata(false);

exif.loadFromFile("GPSExample.jpg");

print("GPS Version ID: "+exif.getGPSVersionID()+"\n");

print("GPS Latitude: "+exif.getGPSLatitude()+"\n");

print("GPS Longitude: "+exif.getGPSLongitude()+"\n");

340

MediaRich CORE 6.2 • Programmer's Guide

print("GPS Altitude: "+exif.getGPSAltitude()+"\n");

print("getGPSTimeStamp: "+exif.getGPSTimeStamp()+"\n");

print("getGPSDateStamp: "+exif.getGPSDateStamp()+"\n");

print("getGPSSatellites: "+exif.getGPSSatellites()+"\n");

print("getGPSStatus: "+exif.getGPSStatus()+"\n");

print("getGPSMeasureMode: "+exif.getGPSMeasureMode()+"\n");

print("getGPSDOP: "+exif.getGPSDOP()+"\n");

print("getGPSSpeed: "+exif.getGPSSpeed()+"\n");

print("getGPSTrack: "+exif.getGPSTrack()+"\n");

print("getGPSImgDirection: "+exif.getGPSImgDirection()+"\n");

print("getGPSMapDatum: "+exif.getGPSMapDatum()+"\n");

print("getGPSDestLatitude: "+exif.getGPSDestLatitude()+"\n");

print("getGPSDestLongitude: "+exif.getGPSDestLongitude()+"\n");

print("getGPSDestBearing: "+exif.getGPSDestBearing()+"\n");

print("getGPSDestDistance: "+exif.getGPSDestDistance()+"\n");

print("getGPSDifferential: "+exif.getGPSDifferential()+"\n");

Common Metadata Methods

The IPTCMetadata and EXIFMetadata objects have several common methods allowing the script
developer to create documents, specify metadata for existing documents, extract a string
representation of the XML document, and validate the document. These operations are summarized
in the following table.

Method Description

IPTCMetadata(validate) Constructs a blank IPTC metadata document
If validate is true, the document is automatically validated in
set<tag>methods.

ExifMetadata(validate) Constructs a blank EXIF metadata document

loadFromFile(filename) Loads metadata object with data from the specified image file

loadFromMedia(media) Loads metadata object with data from the specified media

loadFromXML(xmlString) Loads metadata object with data from the specified XML string

blankDocument() Loads metadata object with a valid blank document

validate() Validates the document to the appropriate schema

isEmpty() Returns true if the document is empty

XMPMetadata(validate) Creates a blank XMP metadata document

341

CHAPTER 10 MediaRich Metadata Support

Method Description

loadFromDiskFile(filename) Loads an XMP document from the named disk file to support
"sidecar" XMP documents

getSingleValueForNode(node) Retrieves a single value for the specified node
If there are enclosed sub-elements, their node values are
concatenated with newlines.

getTagValue(tagName) Retrieves a single value for the element tagName
rdf:Bag and rdf:Seq element values are returned as a single string
with newlines separating the individual values. The tag should use
a "standard" namespace alias (see “XMPMetadata Namespaces”
on page 343 for values). Before searching the document, tagName
is mapped into the documents namespace alias space from the
"standard" space.

setTagValue(value, tagName) Set s the value for the simple element designated by tagName
The tagName must use one of the namespace aliases defined in
XMPMetadataBaseNSTable.

setTagBagValue(tagName, value) Sets a multi-valued element using the rdf:Bag construct
The value must be either an array or a newline delimited string.
The tagName must use one of the namespace aliases defined in
XMPMetadataBaseNSTable.

setTagSeqValue(tagName, value) Sets a multi-valued element using the rdf:Seq construct
The value must be either an array or a newline delimited string.
The tagName must use one of the namespace aliases defined in
XMPMetadataBaseNSTable.

Note: Each metadata constructor creates a blank metadata document of the appropriate type.
The document is not empty, but is a valid XML document for the appropriatemetadata
schema. However, loadFromFile and loadFromMedia leave the document in an empty
state if the file contains no metadata of the appropriate type.

var metadata = new IPTCMetadata();

var empty = metadata.isEmpty(); // returns false

metadata.loadFromFile(“img.jpg”);

if (!metadata.isEmpty())

{

// do something with metadata

}

else

{

// file did not contain metadata.

}

342

MediaRich CORE 6.2 • Programmer's Guide

Alternatively, you can simply use the get<Tag>methods, which return null if the document is
empty.

Enabling and Disabling Exif Validation
There are times when you want to catch images with badly formed Exif information, perhaps to
ensure that the files you send out contain fully valid Exif. To do this, ensure that validation is on, such
as the following example:
var exif = new ExifMetadata();

exif.loadFromXML(exifXml);

Other times, you might want validation to be off. For example, you could write a script that
manipulates one of the Exif fields, where you do the validation on just one field in the script rather
than requiring that the entire Exif blob is valid.
var exif = new ExifMetadata(false);

exif.loadFromXML(exifXml);

XMPMetadata Namespaces
The namespaces currently defined in the XMPMetadataBaseNSTable are as follows:
XMPMetadataBaseNSTable["http://www.w3.org/1999/02/22-rdf-syntax-ns#"] = "rdf";

XMPMetadataBaseNSTable["http://iptc.org/std/Iptc4xmpCore/1.0/xmlns/"] =
"Iptc4xmpCore";

XMPMetadataBaseNSTable["http://ns.adobe.com/exif/1.0/"] = "exif";

XMPMetadataBaseNSTable["http://ns.adobe.com/photoshop/1.0/"] = "photoshop";

XMPMetadataBaseNSTable["http://ns.adobe.com/xap/1.0/"] = "xap";

XMPMetadataBaseNSTable["http://ns.adobe.com/xap/1.0/rights/"] = "xapRights";

XMPMetadataBaseNSTable["http://purl.org/dc/elements/1.1/"]= "dc";

XMPMetadataBaseNSTable["http://ns.adobe.com/xap/1.0/sType/Job#"]= "stJob";

XMPMetadataBaseNSTable["http://ns.adobe.com/xap/1.0/bj/"]= "xapBJ";

XMPMetadataBaseNSTable["http://ns.adobe.com/xap/1.0/mm/"]= "xapMM";

XMPMetadataBaseNSTable["http://ns.adobe.com/tiff/1.0/"]= "tiff";

XMPMetadataBaseNSTable["http://ns.adobe.com/pdf/1.3/"] = "pdf";

XMPMetadataBaseNSTable["http://ns.adobe.com/iX/1.0/"] = "iX";

XMPMetadataBaseNSTable["http://ns.adobe.com/xap/1.0/sType/ResourceRef#"]= "stRef";

XMPMetadataBaseNSTable["http://ns.adobe.com/camera-raw-settings/1.0/"] = "crs";

XMPMetadataBaseNSTable["http://ns.adobe.com/exif/1.0/aux/"] = "aux";

When naming an element in an XMP document, you must use namespaces from this list, regardless
of the actual namespace alias used in the document. When an XMP document is opened, any
namespace aliases in the document aremapped to values in this list using the namespace URLs.

You can add your own namespace aliases to the list in the
Shared/Originals/Sys/XMPMetadata.ms file.

343

CHAPTER 10 MediaRich Metadata Support

Custom SWF XMP Support
The following is an example of high-levelMetadata API extraction:
var xmp = new XMPMetadata(false);

xmp.loadFromFile("Metatest.swf");

print("Title: "+xmp.getTagValue("dc:title")+"\n");

print("Description: "+xmp.getTagValue("dc:description")+"\n");

The following is an example of SWF low-level API extraction (dumps the raw XML):
var meta = new _MR_Metadata("metatest.swf");

var xml = meta.load("XMP");

print(xml + "\n");

The regular SWF metadata is retrieved via Media.getFileInfo() and includes the following:

• Width
• Height
• Frames
• FrameRate
• Format
• XDpi
• YDpi
• ResolutionUnits
• XResolution
• YResolution
• Version
• Type

Any other metadata must be retrieved using theMediaRich XMP metadata API.

Note: The SWF reader supports up to Flash 7, with some support for Flash 8,9, and 10.

SWF reading works like other multpage/multiframe readers. You can specify the frame or frames you
want to load into themedia object with the frame or frames param used with Media.load().
Ranges such as "4-10", for example, are valid as well as specific frame numbers, such as "4,8,20".

You can then operate on the frames as you would with any multipage/multiframemedia object,
using Media.getFrame().

Also, a "time" parameter can also be used. You can specify howmany seconds into themovie to
return a single frame. The time parameter always returns a frame from readablemovies. Requesting
a specific frame could fail if it is beyond the number of frames in themovie or past user input
sections.

Media.load() also accepts the Xs and Ys parameter(s) for SWF which force the frame to be
rendered at a specified size. If they are left off, the default size stored in the SWF file is used.

The detect parameter also works with SWF, so files that lack the ".swf" extension can still be loaded.

344

MediaRich CORE 6.2 • Programmer's Guide

The frames have no times present so if you want to convert a short sequence of frames into a GIF
animation, you will need to specify the frame rate during the save.

Note: Extracting multiple frames causes a temp image file to be created for each frame on disk,
so do not try to convert entire movies this way since it will take a very long time and may cause
disk full errors.

It is NOT possible to seek in SWF files—if you specify frames that are deep into themovie, the
extraction could take a very long time because themoviemust be played back sequentially
internally.

Examples

var m = new Media();

m.load(name @ "Example.swf", time @ 10);

m.save(name @ "out.tif");

m.load(name @ "Example.swf", frame @ 45);

m.save(name @ "out.jpg");

m.load(name @ "Example.swf", frames @ "0,10,20");

m.save(name @ "out.tif");

m.load(name @ "Example.swf", frames @ "7-12");

m.save(name @ "out.tif");

XMP Universal “blob” Find and Replace
The need to provide a “universal XMP embedder” to enable a wide range of potential file formats for
XMP metadata embedding arose in 2009 for Equilibrium’s OEMs. This MediaScript object searches
any file given to it for an XMP blob and replaces that metadata with the new XMP metadata blob
that is created or extracted. It is not capable of adding new XMP blobs to a file.

Note: Any file type that can support XMP metadata blobs can be updated. Refer to Adobe's
XMP specification for more information about supported XMP filetypes.

The plugin adds the XMPEmbed object to MediaScript when the XMPEmbed.mdv is linked to the
script. The object has only a constructor and onemethod - embed().

• The new XMPEmbed() constructor takes the file path for the file to update as the only
parameter. The file must be writable and it must exist.

• The embed()method takes only one parameter - a string object that contains the XMP metadata
to embed.

No parsing or validation of the data is done, so it is entirely possible to put XMP data from one
format into another and confuse applications that read the XMP metadata.

Important: It is strongly recommended that you work on a backup copy of the file because the

345

CHAPTER 10 MediaRich Metadata Support

data is changed in-place and if something goes wrong, the original data cannot be recovered.
However, most errors (except for a physical write failure to themedium) are caught before any
actual data is replaced.

The following sample code demonstrates this use:
// Replace XMP metadata in one file with data from another file

#link "XMPEmbed.mdv"

var meta = new _MR_Metadata("SourceFile.eps");

var xml = meta.load("XMP");

var xmpWriter = new XMPEmbed("DestFile.eps");

xmpWriter.embed(xml);

Metadata from AVLowLevel API

Important: As QuickTime’s professional transcoding capability is deprecated, theMediaRich
CORE A/V 1.1 is also discontinued. We highly recommend that you do NOT utilize theMediaRich
CORE 1.1 API unless absolutely necessary for a specific operation. Additionally, A/V CORE 1.1 is
32-bit only, so you will need to retrieve the 32-bit MediaRich 4.0 before proceeding with any A/V
CORE 1.1 usage.

There are three Java classes in the AVLowLevel Java API that allow access to metadata. QTUserData
(part of the QuickTime handler) accesses metadata for QuickTime video files,
QTWMVIWMHeaderInfo3 (available only on theWindows platform) accesses metadata for Windows
Media video files, and AVElement (part of the ffmpeg handler) allows access to other audio/video
metadata. For information about what file formats each handler (QuickTime, Windows Media,
ffmpeg) is assigned to handle, see “Adding QuickTime Support” on page 269.

The documentation for the AVLowLevel API, which documents the QTUserData,
QTWMVIWMHeaderInfo3, and AVElement classes, is located at Equilibrium/MediaRich All Media
Server/Mediarich Documentation. On Windows system, you can access the AVLowLevel Java API
documentation from the Start menu.

The AVElement class has the getMetaData method, which return metadata such as title, author,
copyright, comment, album, genre, year, and/or track. Here is an example.
var element = new AVElement("SomeMovie.mpg", 1, AVElement.AnyStream);

var metadata = element.getMetaData();

print("The title is " + metadata.title + "\n");

The AVLowLevelDocs documentation for the QuickTime class contains a list ofmany pre-defined
constants that you can use to access QuickTimemetadata. When you use these constants, you must
precede the constant namewith “QuickTime.”, such as QuickTime.codecLowQuality, since these
constants aremembers of the QuickTime class. The constants listed in the AVLowLevelDocs for
QuickTimemetadata are:
Quicktime.kUserDataIPTC

346

MediaRich CORE 6.2 • Programmer's Guide

Quicktime.kUserDataMovieControllerType

Quicktime.kUserDataName

Quicktime.kUserDataTextAlbum

Quicktime.kUserDataTextArtist

Quicktime.kUserDataTextAuthor

Quicktime.kUserDataTextChapter

Quicktime.kUserDataTextComment

Quicktime.kUserDataTextComposer

Quicktime.kUserDataTextCopyright

Quicktime.kUserDataTextCreationDate

Quicktime.kUserDataTextDescription

Quicktime.kUserDataTextDirector

Quicktime.kUserDataTextDisclaimer

Quicktime.kUserDataTextEditDate1

Quicktime.kUserDataTextEncodedBy

Quicktime.kUserDataTextFullName

Quicktime.kUserDataTextGenre

Quicktime.kUserDataTextHostComputer

Quicktime.kUserDataTextInformation

Quicktime.kUserDataTextKeywords

Quicktime.kUserDataTextMake

Quicktime.kUserDataTextModel

Quicktime.kUserDataTextOriginalArtist

Quicktime.kUserDataTextOriginalFormat

Quicktime.kUserDataTextOriginalSource

Quicktime.kUserDataTextPerformers

Quicktime.kUserDataTextProducer

Quicktime.kUserDataTextProduct

Quicktime.kUserDataTextSoftware

Quicktime.kUserDataTextSpecialPlaybackRequirements

Quicktime.kUserDataTextTrack

Quicktime.kUserDataTextURLLink

Quicktime.kUserDataTextWarning

Quicktime.kUserDataTextWriter

The QTWMVIWMHeaderInfo3 class methods use strings to access themetadata. Here is a sample
call.
var info = new QTWMVIWMHeaderInfo3("dixiechicks_theresyourtrouble_120.wmv");

// Show all the file level attributes

var count = info.getAttributeCountEx(0);

for (i = 0 ; i < count ; i++)

{

var attr = info.getAttributeByIndexEx(0, i);

347

CHAPTER 10 MediaRich Metadata Support

print("name: " + attr.name + " value: " + attr.value + "\n");

}

Some of themore common tag strings supported by Windows Media files include the following:
Duration

Bitrate

Seekable

Stridable

Broadcast

Is_Protected

Is_Trusted

Signature_Name

HasAudio

HasImage

HasScript

HasVideo

CurrentBitrate

OptimalBitrate

HasAttachedImages

Can_Skip_Backward

Can_Skip_Forward

FileSize

Title

Author

Copyright

Description

Rating

WMFSDKVersion

WMFSDKNeeded

IsVBR

348

349

MediaRich CORE 6.2 Programmer's Guide

APPENDIX A

MediaRich Programming

Best Practices

350

MediaRich is a very flexible image serving platform. There aremany ways to configure and utilize its
features. This appendix provides some guidelines for making the best use ofMediaRich features for
creating, distributing, and managing your media assets.

Refer to theMediaRich CORE Installation and Administration Guide for information about best
practices for installation and configuration.

Appendix summary

“Media Creation Best Practices” on page 351

“MediaScript Integration” on page 353

“Managing MRL Parameters ” on page 353

“Managing Performance” on page 354

MediaRich CORE 6.2 • Programmer's Guide

Media Creation Best Practices

When implementing any MediaRich solution, it is important that guidelines are established for the
creation of the images. These guidelines will help minimize the confusion between theMediaScript
developer and the graphic designers.

Workflow

The general workflow is that the graphic designers work with their design tools, such as Photoshop,
to create the original images. TheWeb developers work with MediaScript to create the templates for
themedia. The original images and the scripts are placed on theMediaRich server during a push
process. Upon request for an image from aWeb user, MediaRich generates theWeb-ready image
and serves it to the browser.

File naming

It is important to adopt a standard file naming convention so that designers and developers can
quickly locate files. Some typical name conventions utilize SKU, product ID, or product name as the
name of the image. Another strategy is to create a catalog of images and store the information about
the images in a database, text file, or spreadsheet. The catalog could contain the file name, location
of the file, latest revision, and description of the image. The catalog should be stored in a central
location so the team can share it.

Masks

If an image is used for colorization or compositing, it is important that the image contain a mask.
MediaRich does not require masks and can use GIF or PNG transparency information if it is available.
If the image does not contain a mask, the graphic designer must create a mask using an image-
editing program. When themask is created, save the file in a format that preserves themask
information, such as PSD, Targa, or TIFF. The image can then be used for compositing or colorization
using MediaRich commands. If the image exists in a Photoshop layer, it is also possible to extract the
layer and use it for compositing or colorization. Masks can also be created on the fly in MediaRich by
using a selection() operation.

Photoshop layers

MediaRich can also collapse Photoshop layers. One use of this feature is to add mix and match
functionality. For example, a graphic designer can create all possible combinations of office furniture
and store them in a Photoshop file. As long as the Photoshop layers have specific names, it is
possible to have the end user call a script that collapses the specified layers which generates a specific
combination of furniture images. Individual Photoshop layers can be extracted at any time and used
for compositing. If you want to use the whole Photoshop file, you can automatically collapse the
Photoshop file during the load command.

351

APPENDIX A MediaRich Programming Best Practices

Colorization

The colorization of an object, such as a sweater ,can be done in a couple of different ways. One
method is to select the area to colorize using a mask, then apply the colorize operation. This is the
preferred method. RGB values for the different color combinations should be kept in a database,
XML, or text file. This way an external process can control the colorization of the object. The extreme
colors of solid black and solid white do not appear correctly when used for colorize(). It is
recommended that, instead, you use 0x101010, and 0xe0e0e0 or less (for black and white,
respectively). Also, totally saturated colors (such as pure red) can create unexpected results.

Another method is to build up a Photoshop file with multiple layers, each containing a different color
combination. AMediaScript can be created that will collapse the specified layer. This method allows
the artist to havemore control, but is labor intensive.

Localized text

MediaRich supports 16-bit Unicode. It is possible to generate localized text in the form of GIF or JPEG
file. By storing the localized text in a database or text file it is easy to generate localized text. This
allows for the creation of navigation that can be driven by data in a database.

Mix and match

Mix and match functionality can be accomplished either through Photoshop layers or by
compositing images. If you wish to use Photoshop layers place each product in a Photoshop layer
and use Photoshop layer tools to position the object correctly. You can create a simpleMediaScript
that collapses the layers as specified. For more information about collapsing layers, see “collapse()”
on page 84.

Zoom Resolution

If an image is to be used for zooming or panning it is important that a high-resolution image be used
as the source image. A good rule of thumb is to zoom on an image that is at least 1.5 times the size of
your zoom window. If your zoom window is 200 x 200 pixels than make sure your source image is at
least 300 x 300 pixels. Of course, if you wish to have a high quality zoom experience the larger the
source files the better.

Zooming can be arbitrary or based on pre-defined grids. Grid-based zooming limits the possible
combinations and can be pre-cached. Arbitrary zooming on any region can have an infinite number
of possibilities and is thereforemore dynamic. Grid-based zooming is most useful for retail
applications. Arbitrary zooming is good for photographs or maps.

352

MediaRich CORE 6.2 • Programmer's Guide

MediaScript Integration

MediaScript is the scripting language for MediaRich. It is 100% ECMA compliant. For more guidelines
on the language, refer to any resource that covers Jscript, JavaScript, or ECMA Script. The complete
language specification can be found at http://www.ecma-international.org/.

XML files

MediaRich allows users to interact with XML documents and supports all the objects, properties,
and methods of the Document Object Model (DOM) Level 1 Core. The DOM Core is an application
programming interface for XML documents. For information on using the DOM Level 1 Core objects,
properties, and methods, refer to https://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/.

XML can be used to exchange data with other external systems such as application servers and
databases. As an example, you can use XML to retrievemetadata about an image, such as file
location, file description, available colors, crop coordinates, pricing information, and localizable text.

Text data files

MediaScript can also read and write text files. Text files can be used to store and retrieve information.
Text files can be used as another method of integrating MediaRich with other systems. One part of
your system could generate text files that contain product information including image file name,
size, and price. AMediaScript could take the text file as a parameter. TheMediaScript would parse
the text file to determine the image file name, size, and price and generate the image.

Managing MRL Parameters

You can pass as many parameters you want on a URL. However, because some browsers will not
recognize long URLs, it is a best practice to limit theMRL length to below 1024 characters. The order
of the parameters is determined by the parameter ordering in the script. It is up to you to determine
the parameters you want to pass to the script.

Embedding parameters in the script file

One strategy is to minimize the parameters is to add them to the script. This keeps theMRL simple.
Additional parameters could be hard coded as local variables in your script.

Adding parameters to data files

Another strategy is to create a text or XML file that contains the parameters and pass it to the script.
This hides all data from the URL. The script would parse the data file and use the information to
generate the image.

Appending user profile/device profile

User profile information adjusts image color and quality for a specific viewing device based on the
device quality and bit depth. By appending the user profile information to a MRL, the final image can
be adjusted to match the output device. A profile script handles the default behavior for different

353

http://www.ecma-international.org/
https://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/

APPENDIX A MediaRich Programming Best Practices

types of devices. The profile script can bemodified to change the behavior or add more device
support.

Setting the TTL (time-to-live)

You can add an additional parameter to a MRL that will set the TTL of an image. The TTL will tell
MediaRich when the image should be flushed from its cache. The TTL will also work with upstream
caches.

Managing Performance

There are some best practices you can implement to improveMediaRich performance.

Note: MediaRich is 100% compatible with Akamai. Equilibrium is a certified partner of Akamai
and has been tested with the Akamai network. Akamai ARLs can be prepended to a MRL.

Pre-caching

It is sometimes desirable to pre-cache all images on theMediaRich server. The advantage to this is to
reduce any possible image generation overhead. There aremany ways to pre-cache an image. One
method is to use a Perl script, VB script, or a Web crawler to request an image link. This can be done
on the production servers or in staging. If it is done in staging then copy the cache directory to the
live servers.

Dynamic functionality

The biggest performance hit any image server will encounter is when an image needs to be
dynamically generated. The amount of time that is required to open an original image, perform some
image processing, and save to aWeb-safe image format is far greater than serving a generated
image. The best strategy is to try to limit the amount of generations that need be performed on a live
server. One way to accomplish this is to pre-cache the images before they are served to the public.
Another method is to limit the dynamic nature of your Web site. A good ratio is to haveMediaRich
serve 90% cached and 10% dynamic images. All images served by MediaRich can be pre-cached
including zoomed images, mix-and-match imagery, and colorized images.

354

355

MediaRich CORE 6.2 Programmer's Guide

APPENDIX B

MediaScript Troubleshooting

356

If there is a critical error (such as the file or variable name is misspelled and therefore cannot be
found), MediaScript cannot execute and you will see a message explaining the error.

If there is a non-critical error, MediaScript could still execute, using default values in place of the
erroneous commands or parameters.

Appendix summary

“MediaScript Problems ” on page 357

“Script Errors” on page 358

“MediaGenerator Errors” on page 361

“Loading Raw Camera Files” on page 361

“Memory Issues with Very Large Image Files” on page 362

MediaRich CORE 6.2 • Programmer's Guide

MediaScript Problems

The following table describes typical MediaScript problems and their solutions:

Problem Solution

Using importChannel() to import an alpha
mask returns a No such gun in this

raster error message.

To import an alpha mask, the source image must be 32 or
40-bit (capable of supporting an alpha channel).
To fix this error, add the following line to your script
before the importChannel() function:
<media_object>.convert(rtype @ “32- bit”);

or
<media_object>.importChannel(rtype @

“32-bit”);

Using load() fails to load an image and
returns a FlySDK failed to render the

file error message.

If the file has no inherent corruptions, this error can occur
when there is insufficient memory to rasterize the image
at the MediaRich CORE default of 150 DPI. There are two
ways to address this:
• Specify a smaller DPI in the load() method
• Increase the system memory

Note: This error can happen with Illustrator files, both
bitmap and vector Encapsulated PostScript files, plain
PostScript (.ps) files, PDF files, and all Office file types.

Some layers in a Photoshop file cannot be
accessed.

Make sure all the layers in the Photoshop file are visible
when you save it. Open and resave the file if necessary.
Alternatively, call the setLayerEnabled() function to
make the invisible layers visible.
Also, effects layers are ignored by MediaRich. To make
them accessible, transform them into regular layers in
Photoshop.

MediaRich doesn't recognize EPS paths in
Photoshop files.

MediaRich doesn't have a vector engine and it does not
parse Postscript files.
To solve this problem, transform the EPS path to an alpha
channel or layer mask in Photoshop.

357

APPENDIX B MediaScript Troubleshooting

Problem Solution

Using getLayerIndex (“background”), or
collapse(track @ “background”) on a
Photoshop file with a background layer,
returns an error message that the layer or
track was not found.

MediaRich can access Photoshop layers by either layer
name or index number. A background layer, however, is a
special layer type and background is not a proper layer
name.
Examples: collapse(track @ “0”) or getLayerIndex
(“0”).

The collapse() function in MediaRich
delivers a different result than the Photoshop
equivalent.

MediaRich handles layers differently than Photoshop. To
apply the Photoshop standard, set the likePS parameter
in the collapse() function to true.
Example: collapse(likePS @ true). Setting this
option attempts to duplicate Photoshop results.

Script Errors

Script errors all start with theMRL on the first line, followed by the line:
An exception was thrown in <function name> near line <line number> of script "<script
name>":

Use <script name>, <function name>, and <line number> to locate where the error
occurred.

The following table lists error messages that you may encounter in the ScriptErrors.log file and their
probable causes.

Note: This information assumes that MediaRich is properly installed and the different logs are
written to the correct locations.

Error Probable cause

TypeError 1406: Variable is not a

function type.
This exception indicates that an attempt was made to call an
invalid method of an object, or to use a variable as a function.
<function name> is the name of the function in which the
error occurred. <line> is the line number in the script file
<script>.
If this error occurs with the MediaRich test shortcut, then
either the ProgramPath variable in the Local Properties is set
incorrectly, or the TextGDI pipe device is missing or invalid.

SourceError 0001: Unable to open

source file

“sys:/executeScript.ms” for

reading.

The SysPath variable in the Local Properties file is invalid.
This variable must point to the location of the
executeScript.ms script file.

358

MediaRich CORE 6.2 • Programmer's Guide

Error Probable cause

Could not find function '<name>'. The function designated on the MRL as f=<name> does not
exist in the script. Check case of the name.

A filter error occurred while

processing '<mrl>':

Missing value for <mrl> at

<location>

Two ampersands in a row in the MRL.

Illegal argument <arg> at

position 1 of (<arg>).
The argument <arg> specified on the MRL is not valid. Check
the syntax and encoding, or enclose the argument in quotes.

'Illegal argument to '<method>'

method.'
An argument was passed to aMedia object that did not use
the @ notation, or it was not an object.

SyntaxError 1410: All parameters

must be passed by name if any

are.

Some arguments passed to aMedia object did not use the @
notation, while other arguments did.

'MediaScript timeout after <n>

seconds'
The script ran for longer than <n> seconds. <n> is specified in
the MaximumExecutionTime global property.

'No format found for file' The file type specified in the save method, or the extension
given in the load command does not correspond to a known
file format.

'File function not supported' Internal file I/O error indicating that a requested file operation
(for example, save()) is not supported for the given file type.

'Color Map Too Big' The color palette is greater than the maximum size (currently
used only by Targa reader, with a set maximum of 256 colors).

'Can’t Open File' MediaRich cannot create the file in write mode. Check file
permissions.

'Disk Full' The disk is full and MediaRich cannot write any more data to
the file.

'Digimarc: [digimarc error]' Indicates an error in the Digimarc library.

'File Mangled' The file data did not match expected data. Check to see if the
file is corrupted.

'File not found' The file does not exist in the specified location. Check spelling
and location.

'File too short' More data was expected in the file. Check to see if the file is
corrupted.

'File Type Wrong' The file is not the expected type.

359

APPENDIX B MediaScript Troubleshooting

Error Probable cause

'Format Unsupported' The raster type is not supported by the specified file format.

'Frames different size' The frames in a multi-frame Media object (for example, GIF
animation) are different sizes.

'Couldn't find the requested

font'
The font requested could not be found.

'Insufficient Memory' The system did not have sufficient memory to process the
request.

'No such gun in this raster' The requested channel type (such as the red or alpha
channel) is not present in the raster type.

'Parameter Bad' An invalid parameter was passed to aMedia method.

'Parameter Missing' The script does not specify a parameter required by the
media object function.

'Wrong raster type' The operation does not support the selected raster type.

'No media for function' An operation was attempted on an empty Media object.

'Operation requires license' Indicates that a separate license is required to perform the
requested operation. Contact Equilibrium customer service.

'PIFF hunk not found' An internal file I/O error indicates unexpected or missing
data.

'Parameters clash' The script specifies incompatible parameters. For example,
you have specified values for both the Color and Index
parameters in the glow() function.

'File already exists' An attempt was made to write over a locked file.

'No appropriate file system was

found'
The virtual file system requested is undefined.

'You cannot use '..' in file

paths'
Enclosing directories are not accessible using the .. notation.
Specify the path.

'An attempt was made to write to

or change a read-only filesystem'
The virtual filesystem for a save is designated read-only.

'A reference was made to an

undefined filesystem'
The filesystem specified in a read or write request is
undefined. See Installing and Managing MediaRich.

'The attempted operation does not

allow mixing RGB and CMYK image

colorspaces'

Operations such as collapse, require that all components
(layers or frames) of a media be in the same colorspace (i.e.,
RGB or CMYK).

360

MediaRich CORE 6.2 • Programmer's Guide

Error Probable cause

'The attempted operation is not

supported on CMYK images'
The operation cannot be performed on CMYK images.

'The Color Management Plugin is

not installed'
An operation requiring the Color management plugin
(ColorManage.pdv) was attempted and the device is not
installed. Check your installation.

MediaGenerator Errors

If you experience issues for loading multi-page documents or other MediaGenerator errors, be sure
to review your configuration to ensure that it meets the following guidelines:

For additional information about MediaRich Server configuration, see theMediaRich CORE
Installation and Administration Guide .

Windows installations

Minimum recommended configuration for imaging, documents, office applications (no heavy video
transcoding, 4k or UHD video transcoding):

• Dual 3+ GHz Intel® Xeon Sandy Bridge or later processors
• 8 GB memory
• Microsoft Windows Server 2012 or later
• Microsoft Internet Information Services® (IIS) and ASP.NET with sub-components

Minimum recommended configuration when processing large HQ videos such as 4k, UHD or 1080P,
images, multi-page documents (baremetal highly recommended for video transcoding!):

• 8 Core Intel Xeon Sandy Bridge or later processors
• Dedicated MediaRich Server 8 Core License in shared cache configuration
• Windows Server 2012R2 or later installed (2012R2 is required for GPUOption)
• Dedicated cache volume 4 x 250 GB Disk 15K SAS RAID-10
• OS-Volume 2x150 GB/SAS/10K mirror
• 32 GB Ram

Loading Raw Camera Files

The variety of raw camera file formats in the world is staggering. MediaRich can read many of them.
However, becausemany of these formats do not have consistent file extensions and some of the
extensions on these files conflict with other file types, MediaRich limits the number of extensions it
associates with raw camera files. As of this writing, the file extensions recognized by MediaRich as raw
camera files are the following:

.dng, crw, .dcr, .kdc, .k25, .dc2, .orf, .raf, .raw, .rw2, .nef, .cr2, .mos, .cs1, .arw, .3fr, .erf, .mef,

.mrw, .pef, .sr2, .srf, .x3f, .fff, .red, .iiq, .srw, .sti, .r3d, .ari, .qtk, .rdc, .hdr, .ia

361

APPENDIX B MediaScript Troubleshooting

There are threemethods to work around this so that MediaRich can read raw camera files with other
extensions:

1. Expand the list of extensions associated with raw camera files.

If you define a property named CameraRaw.extensions in the local.properties file, MediaRich will
add the extensions listed in the value of this property to the list of extensions associated with
raw camera files. The value of this property should be a comma-separated list of extensions that
include the . character, just like the list. For example:

CameraRaw=.fis,.bla,.abc

2. Specify type @ “CameraRaw” in the load call to indicate that a file should be interpreted as a
raw camera file, such as the following:

media.load(name @ “image.xyz”, type @ “CameraRaw”);

3. Specify detect @ true in the load call to haveMediaRich use the contents of the file to try to
figure out how to load it, such as the following:

media.load(name @ “image.xyz”, detect @ true);

Memory Issues with Very Large Image Files

If you are working with very large image files and are experiencing errors or crashes on aWindows
system, this could be caused by a low-memory situation. For example, you could find that executing
a save() for a 50,000 x 40,000 pixel image after a colorize() with selection() and other operations
results in a write error. Such a process requires 8,000,000,000 bytes ofmemory, and this example
would require three rasters of that size to be in memory at the same time.To accommodate this, the
system would need 24,000,000,000 bytes, in addition to the operational memory requirements of
MediaRich and Windows.

Important: There is NO indication of a low-memory situation caused by something that was
done BEFORE the save().

• Check that the automatic scale-down settings are enabled in the Global Properties of the
MediaRich CORE Server.
With the default settings enabled, MediaRich downsizes TIFF, JPEG, and Photoshop files to a max
of 8192x8192 at loading. It is possible that this was disabled.
For more information about setting MediaLoadMaxHeight and MediaLoadMaxWidth to manage
automatic scale-down, see theMediaRich CORE Server Installation and Administration
Guide.

• Try adding morememory to your server.
For working with large image files, 32 GB of physical RAM is a minimum recommended
configuration on Windows systems.

362

363

MediaRich CORE 6.2 Programmer's Guide

APPENDIX C

File Format Support

364

MediaRich supports over 400 image, Office, Drawing, and RAW camera file types.

For a regularly updated file format list, please visit our Supported Formats page on the Equilibrium
web site:
http://equilibrium.com/mediarichserver/features/#mr-filetypes
http://equilibrium.com/mediarichsharepoint/features/#formats
http://equilibrium.com/equilibriumnew/oneviewer/supported-formats

Appendix summary

“MediaRich Image File Formats Natively Supported” on page 365

“Office File Formats Supported” on page 372

http://equilibrium.com/mediarichserver/features/#mr-filetypes
http://equilibrium.com/mediarichsharepoint/features/#formats
http://equilibrium.com/equilibriumnew/oneviewer/supported-formats

MediaRich CORE 6.2 • Programmer's Guide

MediaRich Image File Formats Natively Supported

TheMediaRich CORE provides support for the following image file formats.

Note: If not indicated by a “yes”, Text Extraction may or may not work.

File extension
and format Category Read/Write

Color
space
support

Metadata
ingest

Metadata
embed

Text
extraction
(all text)

PDF: Adobe
Acrobat

Portable
Document

Read/Write
(PDF
Image)

Renders
to RGB,
CMYK

Basic yes (also
one page,
page
range)

AI: Adobe
Acrobat

Drawing-Vector Read Renders
to RGB,
CMYK

Basic

PIX: Alias
Workstation
Image

Image Read/Write RGB Basic None

RAW: Panasonic
Camera Raw

RAW Camera
Image

Read Converts
to RGB

Enhanced

CR2: Canon
Camera Raw

RAW Camera
Image

Read Converts
to RGB

Enhanced

CRW: Canon
Camera Raw

RAW Camera
Image

Read Converts
to RGB

Enhanced

DNG: Adobe
Digital Negative

Digital Negative Read Converts
to RGB

Enhanced

EPS:
Encapsulated
Postscript

Drawing-Vector Read/Write Renders
to RGB,
CMYK

Basic

EPSF:
Encapsulated
Postscript

Drawing-Vector Read/Write RGB and
CMYK

Basic

RAF: Fuji FinePix
Raw

RAW Camera
Image

Read Converts
to RGB

Enhanced

365

APPENDIX C File Format Support

File extension
and format Category Read/Write

Color
space
support

Metadata
ingest

Metadata
embed

Text
extraction
(all text)

GIF: Graphics
Interchange
Format

Image/Animation Read/Write RGB Basic Basic

JPE: JPEG Image Read RGB,
CMYK,
with ICC
Support

Enhanced

JPEG: JPEG Image Read RGB,
CMYK,
with ICC
Support

Enhanced

JPG: JPEG Image Read/Write RGB,
CMYK,
with ICC
Support

Enhanced Enhanced

J2K: JPEG 2000 Image Read GRAY,
RGB,
YCBRC
Convert

Basic

JP2: JPEG 2000 Image Read/Write GRAY,
RGB,
YCBRC
Convert

Basic None

JPX: JPEG 2000 Image Read GRAY,
RGB,
YCBRC
Convert

Basic

J2C: JPEG 2000
Stream

Image Read GRAY,
RGB,
YCBRC
Convert

Basic

JCC: JPEG 2000
Stream

Image Read GRAY,
RGB,
YCBRC
Convert

Basic

366

MediaRich CORE 6.2 • Programmer's Guide

File extension
and format Category Read/Write

Color
space
support

Metadata
ingest

Metadata
embed

Text
extraction
(all text)

JPC: JPEG 2000
Stream

Image Read/Write GRAY,
RGB,
YCBRC
Convert

Basic None

DCR: Kodak
Digital Raw

RAW Camera
Image

Read Converts
to RGB

Enhanced

PCT: Mac PICT Image Read/Write RGB Basic None

PICT: Mac PICT Image Read RGB Basic None

MOS: Creo Leaf
Mosaic Camera
Raw

RAW Camera
Image

Read Converts
to RGB

Enhanced

NEF: Nikon Raw RAW Camera
Image

Read Converts
to RGB

Enhanced

ORF: Olympus
Raw

RAW Camera
Image

Read Converts
to RGB

Enhanced

PCX: PC
Paintbrush

Image Read/Write RGB Basic None

PS: Photoshop Image Read/Write RGB,
CMYK
with ICC
Support

Enhanced Enhanced

PSB: Photoshop
Large Image
Format

Image Read RGB Enhanced

PNG: PNG Image Read/Write RGB Enhanced Basic

PBM: Portable
Bitmap

Image Read B&W Basic

PPM: Portable
Pixel Map

Image Read/Write RGB Basic Basic

PPMB: Portable
Pixel Map

Image Read RGB Basic

PBMA: Portable
Pixel Map

Image Read B&W Basic

367

APPENDIX C File Format Support

File extension
and format Category Read/Write

Color
space
support

Metadata
ingest

Metadata
embed

Text
extraction
(all text)

PBMB: Portable
Pixel Map

Image Read B&W Basic

PS: Postscript Portable
Document

Read Renders
to RGB,
CMYK

Basic Yes (also
one page,
page
range)

BW: Silicon
Graphics Image

Image Read RGB Basic

RGBA: Silicon
Graphics Image

Image Read RGB Basic

SGI: Silicon
Graphics Image

Image Read/Write RGB Basic

CS1: Sinar
Camera Raw

RAW Camera
Image

Read Converts
to RGB

Enhanced

ARW: Sony Raw RAW Camera
Image

Read Converts
to RGB

Enhanced

TGA: Targa Image Read/Write RGB Basic Basic

TIF: TIFF Image/Multi-page
image

Read/Write RGB,
CMYK
with ICC
support

Enhanced Enhanced

TIFF: TIFF Image/Multi-page
image

Read RGB,
CMYK
with ICC
support

Enhanced

BMP: Windows
Bitmap

Image Read/Write RGB Basic Basic

WBMP: Wireless
Bitmap

Image Read/Write RGB Basic None

3FR: Hasselblad
Camera Raw

RAW Camera
Image

Read Converts
to RGB

Enhanced

ERF: Epson
Camera RAW

RAW Camera
Image

Read Converts
to RGB

Enhanced

368

MediaRich CORE 6.2 • Programmer's Guide

File extension
and format Category Read/Write

Color
space
support

Metadata
ingest

Metadata
embed

Text
extraction
(all text)

FFF: Hasselblad
Camera RAW

RAW Camera
Image

Read Converts
to RGB

Enhanced

KDC: Kodak
Camera Raw

RAW Camera
Image

Read Converts
to RGB

Enhanced

MEF: Mamiya
Camera Raw

RAW Camera
Image

Read Converts
to RGB

Enhanced

MRW: Minolta
Camera Raw

RAW Camera
Image

Read Converts
to RGB

Enhanced

PEF: Pentax
Camera Raw

RAW Camera
Image

Read Converts
to RGB

Enhanced

SR2: Sony
Camera Raw

RAW Camera
Image

Read Converts
to RGB

Enhanced

STI: Sinar Capture
Shop Camera
Raw

RAW Camera
Image

Read Converts
to RGB

Enhanced

X3F: Sigma
Camera Raw

RAW Camera
Image

Read Converts
to RGB

Enhanced

MediaRich Audio and Video File Formats Natively Supported

AVCore 2 includes enhanced performance and GPU transcoding support. It reads all existing formats
(EXCEPT FLI, FLC OR ANY VIDEO CONTAINING PALETTED DATA) and writes several existing formats,
plus native Flash Video, Ogg Theora, GXF, MTS, and VPX/webm.

MediaRich CORE supports the following audio and video file formats. The video and video/audio
formats support 24 bit RGB.

Important: Currently, AVCore 2 is only capable of reading non-paletted video frames.

Audio/Video File Extension and
Format Category Read/Write

Metadata
ingest

Metadata
embed

AAC: AAC Audio audio Read Enhanced None

AC3: AC3 Audio Stream audio Read Enhanced None

AMR: AMR Audio audio Read Enhanced None

369

APPENDIX C File Format Support

Audio/Video File Extension and
Format Category Read/Write

Metadata
ingest

Metadata
embed

AIF: Audio Interchange File Format
(Mac and SGI)

audio Read, Write Enhanced None

AIFF: Audio Interchange File Format
(Mac and SGI)

audio Read, Write Enhanced None

DV: Digital Video Stream video Read, Write Enhanced None

FLV: Flash Video video Read, Write Enhanced None

F4V: Flash Video video Read, Write Enhanced None

FLC: Autodesk FLIC Animation File animation Read, Write Enhanced None

3G: iPhone cell, Mobile 3G video Read, Write Enhanced None

M4V: iPod, iPhone wifi, Apple TV video Read, Write Enhanced Enhanced
(Transcode
only)

MXF: Material Exchange Format video Read, Write Basic None

3GP: Mobile 3G Audio/Video video Read, Write Enhanced None

3G2: Mobile 3G Audio/Video video Read, Write Enhanced None

3GPP: Mobile 3G Audio/Video video Read, Write Enhanced None

3GP2: Mobile 3G Audio/Video video Read, Write Enhanced None

MJPG: Motion Jpeg video Read, Write Enhanced None

MP2: Mpeg Audio Layer 2 audio Read Enhanced None

MPEG: Mpeg1 or 2 Video Program
Stream

video Read, Write Enhanced None

MPG: Mpeg1 or 2 Video Program
Stream

video Read, Write Enhanced None

M1V: Mpeg1 Video video Read, Write Enhanced None

MP3: Mpeg2 audio Layer 3 audio Read Enhanced None

VOB: Mpeg2 DVD (unencrypted file
required)

video Read Enhanced None

PS: Mpeg2 Program Stream video Read, Write Enhanced None

MPE: Mpeg2 Standard video Read, Write Enhanced None

370

MediaRich CORE 6.2 • Programmer's Guide

Audio/Video File Extension and
Format Category Read/Write

Metadata
ingest

Metadata
embed

MPEG2: Mpeg2 Standard video Read, Write Enhanced None

MPG2: Mpeg2 Standard video Read, Write Enhanced None

MP2: Mpeg2 Standard, RAM and RM video Read, Write Enhanced None

M2T: Mpeg2 Transport Stream video Read, Write Enhanced None

M2V: Mpeg2 Video video Read, Write Enhanced None

M4A: Mpeg4 AAC Audio audio Read, Write Enhanced None

Mpeg4 (RAW): Mpeg2 RAW Video video Read Enhanced None

MP4: Mpeg4 with AAC and other
standard Audio encode

video Read, Write Enhanced None

OGG: OGG Vorbis Audio audio Read Enhanced None

MOV: Quicktime, Hinted movie
* See Codec supported detail

video Read, Write Enhanced Enhanced

RAM: Real Media (writes only
1.0/2.0)

video Read, Write Basic None

RM: Real Media (writes only 1.0/2.0) video Read, Write Basic None

GXF: Sony Mpeg2-XDCAM SD/HD video Read, Write Basic None

AU: Sun Microsystems Audio File audio Read, Write Basic None

AVI: Windows Audio Video Interface video Read, Write Enhanced None

ASF: Windows Media Active Server
(2) (3)

audio/video Read, Write Enhanced Enhanced

WMA: Windows Media Audio (3) audio Read, Write Enhanced Enhanced

WMV: Windows Media Video (1) (3) video Read, Write Enhanced Enhanced

Wave: Windows PCM audio format audio Read, Write Enhanced None

(1)Windows Media 11 for WMV in HD (64-bit Windows Server 2003 not supported)

(2) Sharp Audio Codec must be installed.

(3)When exporting, CBR or Quality-based VBR output settings for audio are the only types
supported. Bitrate VBR for audio is not supported.

Basic Metadata support means that MediaRich can extract size, bit depth, frames, and time.

Enhanced Metadata support means there is complete extraction and embedding ofmetadata with
field handlers shown in the documentation. It can embed some kind of information other than

371

APPENDIX C File Format Support

width/height/depth/time/samplerate. The types ofmetadata vary from file format to file format: for
instance, not every file format can embed Exif data, or author, etc.

Codecs we have tested and support with legacy QuickTime: Animation, Apple Intermediate Codec,
BMP, Cinepak, Component Video, DV - PAL, DV- NTSC, Graphics, H.261, H.263, H.264, JPEG 2000,
Motion JPEG A, Motion JPEG B, MPEG-4 Video, Photo - JPEG, Planar RGB, PNG, Sorenson Video,
Sorenson Video 3, TGA, and TIFF.

Audio Codecs: 24-bit Integer, 32-bit Floating Point, 32-bit Integer, 64-bit Floating Point, A-Law 2:1,
AMR Narrowband, Apple Lossless, IMA 4:1, MACE 3:1, MACE 6:1, MPEG-4 Audio (AAC), Qualcomm
PureVoice.

Office File Formats Supported

MediaRich supports the following file formats. They are rendered to RGB. These are read-only on
Macintosh and Windows.

Note: If not indicated by a “yes”, Text Extraction may or may not work.

File extension and format Category
Text extraction
(Windows only)

PDB: AportisDoc (Palm) Word Processing yes

DXF: AutoCAD Interchange Format Drawing-Vector

CGM: Computer Graphics Metafile Presentation

XML: DocBook, Microsoft Excel/Word 2003 XML Word Processing/Spreadsheet yes

EMF: Enhanced Metafile Drawing-Vector

HWP: Hangul WP 97 Word Processing yes

HTM, HTML: HTML Document HTML yes

OTH: HTML Document Template HTML yes

PCD: Kodak Photo CD (192x128, 768x512,
384x256)

Drawing-Raster

123: Lotus 1-2-3 Spreadsheet yes

WK1: Lotus 1-2-3 Spreadsheet yes

WKS: Lotus 1-2-3 Spreadsheet yes

XLSB: Microsoft Excel 2007 Binary Spreadsheet yes

XLSM: Microsoft Excel 2007 XML Spreadsheet yes

372

MediaRich CORE 6.2 • Programmer's Guide

File extension and format Category
Text extraction
(Windows only)

XLSX: Microsoft Excel 2007 XML Spreadsheet yes

XLTM: Microsoft Excel 2007 XML Template Spreadsheet yes

XLTX: Microsoft Excel 2007 XML Template Spreadsheet yes

XLM: Microsoft Excel 4.x-5.0/95/97/2000/XP Spreadsheet yes

XLC: Microsoft Excel 4.x-5.0/95/97/2000/XP Chart yes

XLW: Microsoft Excel 4.x-5.0/95/97/2000/XP Spreadsheet yes

XLT: Microsoft Excel 4.x-5.0/95/97/2000/XP Spreadsheet yes

XLS: Microsoft Excel 4.x-5.0/95/97/2000/XP Spreadsheet yes

PPTM: Microsoft PowerPoint 2007 XML Presentation

PPTX: Microsoft PowerPoint 2007 XML Presentation

POTM: Microsoft PowerPoint 2007 XML Template Presentation

POTX: Microsoft PowerPoint 2007 XML Template Presentation

PPS/PPSX: Microsoft PowerPoint 97/2000/XP Presentation

PPT: Microsoft PowerPoint 97/2000/XP Presentation yes

POT: Microsoft PowerPoint 97/2000/XP Template Presentation

DOC: Microsoft WinWord, 5, 6.0/95, 97/2000/XP Word Procession yes

DOCM: Microsoft Word 2007 XML Word Procession

DOCX: Microsoft Word 2007 XML Word Procession yes

DOTM: Microsoft Word 2007 XML Template Word Procession yes

DOTX: Microsoft Word 2007 XML Template Word Procession yes

DOT: Microsoft Word 95, 97/2000/XP Template Word Procession yes

OTG: ODF Drawing Template Drawing-Vector

ODG: ODG Drawing, ODF (Impress) Drawing-Vector

ODM: ODF Master Document Word Processing yes

ODP: ODF Presentation Presentation

OTP: ODF Presentation Template Presentation

ODS: ODF Spreadsheet Spreadsheet yes

373

APPENDIX C File Format Support

File extension and format Category
Text extraction
(Windows only)

OTS: ODF Spreadsheet Template Spreadsheet yes

ODT: ODF Text Document Word Processing yes

OTT: ODF Text Document Template Word Processing yes

STD: OpenOffice 1.0 Drawing Template Drawing-Vector

SXD: OpenOffice 1.0 Drawing, OpenOffice Impress Drawing-Vector

STW: OpenOffice HTML/Text Template HTML

SXG: OpenOffice 1.0 Master Document Word Processing yes

SXI: OpenOffice 1.0 Presentation Presentation

SXC: OpenOffice 1.0 Spreadsheet Spreadsheet yes

STC: OpenOffice 1.0 Spreadsheet Template Spreadsheet yes

SXW: OpenOffice 1.0 Text Document Word Processing yes

MET: OS/2 Metafile Drawing-Vector

PXL: Pocket Excel Spreadsheet yes

PSW: PocketWord Word Processing yes

PGM: Portable Graymap Drawing-Raster

WB2: Quattro Pro 6.0 Spreadsheet yes

RTF: Rich Text Format, RTF (OpenOffice Calc) Word Processing yes

SVG: Scalable Vector Graphic Drawing-Vector

SGV: StarDraw 2.0 Drawing-Vector

SDP: StarImpress 4.0/5.0 Presentation

SVM: StarView Metafile Drawing-Vector

SDW: StarWriter 1.0, 2.0, 3.0-5.0 Word Processing yes

SGL: StarWriter 4.0/5.0 Master Document Word Processing yes

SGF: StarWriter Graphics Format Drawing-Vector

STW: StarWriter doc Word Processing

SXD: OpenOffice 1.0 drawing Drawing

STD: OpenOffice 1.0 drawing Drawing

374

MediaRich CORE 6.2 • Programmer's Guide

File extension and format Category
Text extraction
(Windows only)

RAS: Sun Raster Format Drawing-Raster

SLK: SYLK Spreadsheet yes

602: T602 Document Word Processing yes

UOS: Unified Office Format spreadsheet Spreadsheet yes

UOF: Unifed Office Format spreadsheet, text,
presentation

Spreadsheet yes

UOP: Unified Office Format presentation Presentation

WMF: Windows Metafile Drawing-Vector

WPD: WordPerfect Document Word Processing yes

XBM: X Bitmap Drawing-Raster

XPM: X PixMap Drawing-Raster

375

Index

376

2

2D interpolation 240

3

3D rotate 175

A

addArgument() 76
addAttachment() 236
addBccAddress() 236
addCcAddress() 236
addFile() 233
addToAddress() 237
adjustHsb() 75
adjustRgb() 76
append() 224
arc() 77
Aspect Ratio Correction Modes 258
Audio

creating new 276
duration 274
examples 285
ExportMovie format and compression parameters 279
file formatssupported 369
file name 273
file path 273
MediaScript API 248, 268
number of channels 274

sample rate 275
sample size 274
See alsoQuicktimeMovie object 268
set segment to export 277

audio/video
transcoding processor 253

Audio/Video object
SeeQuicktime object 268

AVClip Special Notes 264
AVContainers 250
AVCore 1 Compatibility Script 252
AVCore 2 248-249
avsettingsmaker 255, 283
AWS object 243

B

Best Practices and Other Helpful Info 266
blank canvas 155
blur() 80
blurBlur() 81
blurGaussianBlur() 81
blurMoreBlur() 82
blurMotionBlur() 83

C

channels 132
clear() 210
clearCached() 210
clone() 84
close() 210, 230, 234

MediaRich CORE 6.2 • Programmer's Guide

CmykColor object 242, 246
collapse() 84
color profiles 228
colorCorrect() 86
colorFromImage() 89
colorize() 88
colorspace methods

adjustHsb() 75
adjustRgb() 76
colorCorrect() 86
colorFromImage() 89
colorize() 88
colorToImage() 90
equalize() 111
fixAlpha() 113
reduce() 171
setColor() 188

colorToImage() 90
COM API

MediaGenClient DLL 22
COMCreateObject() 52
composite() 91
compression 180
compression parameters

ExportMovie function 279
compression settings files

creating 255-256, 283
Convert (cvt) 31
convert() 94
convolve() 95
copy() 211
crop (cr) parameter 28
crop() 96
Cubic object 240
custom file system aliases 41

D

darkCutoff
detect() 284

DeBabelizer 181
detect()

darkCutoff 284
determining dark frames 284
determining howmany framesare considered 284
determining light frames 284
lightCutoff 284
multiplier 284

Digimarc support
digimarcDetect() 97

377

digimarcEmbed() 98
digimarcRead() 100

discard() 101
DPI resolution 197
drawing methods

arc() 77
drawText() 102
ellipse() 108
line() 134
makeText() 156
polygon() 165
rectangle() 169

drawText() 102
dropShadow() 106

E

ellipse() 108
Emailer object 235

addAttachment() 236
addBccAddress() 236
addCcAddress() 236
addToAddress() 237
send() 237
setFromAddress() 237
setMessage() 238
setMessageHTML() 238
setPassword() 239
setServer() 239
setSubject() 239
setUsername() 240

embeddedProfile() 111
EPS files 181
equalize() 111
error handling 50

QuicktimeMovie object 270
error() 50
ExectyeScriptStream 20
ExecuteScript 20
ExecuteScriptCache 20
EXIF GPS Metadata Extraction 340
exists() 211
export

set audio/video segment to export 277
exportChannel() 112
exportGun() see exportChannel() 112
ExportMovie function 269, 276

compression settings files 283
determining output video size 283
format and compression parameters 279

378

getObjectSize() 280
input parameters 277
output path parameter 279
processObject 280
setSegment() 277
VideoStill() 278

extractAll() 234
extractFile() 234

F

ffmpeg tool 272
file formats

audio/video 369
images 365
LibreOffice-enabled 372
save() 177

File object 208
clear() 210
clearCached() 210
close() 210
copy() 211
exists() 211
freeSpaceGB() 211
getFileExtension() 212
getFileName() 212
getFileNameNoExt() 212
getFilePath() 213
getFilePathNoExt() 213
getLastAccessed() 213
getLastModified() 214
getParentPath() 214
getSize() 214
getType() 214
isDirectory() 215
isFile() 215
length() 215
list() 216
mkdir() 216
read() 216-217
readBinary() 217
readNextLine() 218
remove() 218
rename() 218
rmdir() 218
setShared() 219
write() 219
writeBinary() 219

filtering methods
blur() 80
blurBlur() 81

blurGaussianBlur() 81
blurMoreBlur() 82
blurMotionBlur() 83
convolve() 95
dropShadow() 106
glow() 128
noiseAddNoise() 160
otherHighPass() 161
otherMaximum() 162
otherMinimum() 163
pixellateFragment() 164
pixellateMosaic() 164
quadWarp() 168
sharpenSharpen() 198
sharpenSharpenMore() 199
sharpenUnsharpMask() 200
stylizeDiffuse() 203
stylizeEmboss() 204
stylizeFindEdges() 205
stylizeTraceContour() 206

firstFilel() 235
fixAlpha() 113
flip() 113
FlySDK 357
frame

get video frame at time 275
including a blank frame in a video 278
preprocessing 281
save video frame at time 275

frameAdd() 114
frames

darkcutoff for scene sampler 284
determining for scene sampler 284
example grabbing video frames 291
example image processing video frames 289-290
light cutoff for scene sampler 284

freeSpaceGB() 211
FSNet file systems 45
FTP support 139
function

getFrame() 281

G

getAverageColor() 115
getBatchID() 55
getBatchTempDir() 55
getBitsPerSample() 115
getBytesPerPixel() 116
getClass() 231

MediaRich CORE 6.2 • Programmer's Guide

getColorspace() 232
getConnectionspace() 232
getDuration()

audio/video 274
getEntireText() 226
getExtensionFromType() 71
getFileExtension() 212
getFileName() 212, 235

audio/video 273
getFileNameNoExt() 212
getFileParamNames() 55
getFileParamPath() 56
getFilePath() 213

audio/video 273
getFilePathNoExt() 213
getFrame() 116
getFrameAtTime()

video 275
getFrameCount() 117

video 274
getHeader() 56
getHeaderNames() 57
getHeight() 117

video 273
getImageFormat() 117
getInfo() 118
getJobID() 57
getJobTempDir() 58
getLastAccessed() 213
getLastModified() 214
getLayer() 118
getLayerBlend() 118
getLayerCount() 119
getLayerEnabled() 119
getLayerHandleX() 120
getLayerHandleY() 120
getLayerIndex() 121
getLayerName() 121
getLayerOpacity() 122
getLayerX() 122
getLayerY() 123
getMetaData() 123
getName() 231
getNotCached() 58
getNumChannels()

audio/video 274
getOutputSize() 280
getPalette() 124
getPaletteSize() 124
getParameter() 58

379

getParameterNames() 59
getParentPath() 214
getPath() 59, 231
getPixel() 124
getPixelFormat() 125
getPixelTransparency() 125
getPopularColor() 126
getPropertyValue() 52
getQueryString() 59
getRequestURL() 59
getResHorizontal() 126
getResVertical() 127
getSampleFormat()

audio/video 274
getSampleRate()

audio/video 275
getSamplesPerPixel() 127
getScriptFileName() 52
getScriptPath() 60
getSize() 214
getText() 224, 227
getTextType() 224
getType() 214, 225
getTypeFromExtension() 72
getWidth() 127

video 273
getXmlInfo() 128
GIF files 178-179
Global Functions

error() 50
getPropertyValue() 52
getScriptFileName() 52
print() 53
rgb() 53
stringTrimBoth() 53
stringTrimEnd() 53
stringTrimStart() 53
version() 51, 54

glow() 128
gradient() 130
Grid-Zoom (gz) 32

H

HTTP request methods 54
HTTP support 139

380

I

IccProfile object 228
getClass() 230-231
getColorspace() 232
getConnectionspace() 232
getName() 231
getPath() 231

image
file formatssupported 365

image editing methods
composite() 91
convert() 94
crop() 96
flip() 113
rotate() 174
scale() 183
selection() 186
zoom() 207

image inclusion in a video 278
image size 28
imageserverRoot 68
importChannel() 132
informational parameters 49, 95
interlaced 179
isDirectory() 215
isFile() 215

J

JPEG files 179-180

L

layers
collapsing 84
loading 145

length() 215
LibreOffice

file formatssupported 372
lightCutoff

detect() 284
line() 134
list() 216
load() 137
loadAsRgb() 153
loadFile() 221
loadString() 222

M

makeCanvas() 155
makeText() 156
measureText() 159
Media object 68

addArgument() 76
adjustHsb() 75
adjustRgb() 76
arc() 77
blur() 80
blurBlur() 81
blurGaussianBlur() 81
blurMoreBlur() 82
blurMotionBlur() 83
clone() 84
collapse() 84
colorCorrect() 86
colorFromImage() 89
colorize() 88
colorToImage() 90
composite() 91
convert() 94
convolve() 95
crop() 96
digimarcDetect() 97
digimarcEmbed() 98
digimarcRead() 100
discard() 101
drawText() 102
dropShadow() 106
ellipse() 108
embeddedProfile() 111
equalize() 111
exportChannel() 112
fixAlpha() 113
flip() 113
frameAdd() 114
getAverageColor() 115
getBitsPerSample() 115
getBytesPerPixel() 116
getFrame() 116
getFrameCount() 117
getHeight() 117
getImageFormat() 117
getInfo() 118
getLayer() 118
getLayerBlend() 118
getLayerCount() 119
getLayerEnabled() 119
getLayerHandleX() 120

MediaRich CORE 6.2 • Programmer's Guide

getLayerHandleY() 120
getLayerIndex() 121
getLayerName() 121
getLayerOpacity() 122
getLayerX() 122
getLayerY() 123
getMetaData() 123
getPalette() 124
getPaletteSize() 124
getPixel() 124
getPixelFormat() 125
getPixelTransparency() 125
getPopularColor() 126
getResHorizontal() 126
getResVertical() 127
getSamplesPerPixel() 127
getWidth() 127
getXmlInfo() 128
glow() 128
gradient() 130
importChannel() 132
line() 134
load() 137
loadAsRgb() 153
makeCanvas() 155
makeText() 156
measureText() 159
noiseAddNoise() 160
otherHighPass() 161
otherMaximum() 162
otherMinimum() 163
pixellateFragment() 164
pixellateMosaic() 164
polygon() 165
quadWarp() 168
rectangle() 169
reduce() 171
rotate() 174
rotate3d() 175
save() 177
saveEmbeddedProfile() 183
scale() 183
selection() 186
setColor() 188
setFrame() 190
setLayer() 191
setLayerBlend() 191
setLayerEnabled() 192
setLayerHandleX() 192
setLayerHandleY() 193
setLayerOpacity() 193
setLayerPixels() 194

381

setLayerX() 194
setLayerY() 195
setMetadata() 195
setPixel() 196
setResolution() 197
setSourceProfile() 198
sharpenSharpenMore() 199
sharpenUnsharpMask() 200
sharperSharpen() 198
sizeText() 201
stylizeDiffuse() 203
stylizeEmboss() 204
stylizeFindEdges() 205
stylizeTraceContour() 206
zoom() 207

MediaGenClient DLL 22
MediaGenWebService() 19
MediaRich Audio/Video 248, 268

examples 285
MediaScript

response types 61
MediaScript objects

response contents 60
XmlDocument 221

metadata
audio/video duration 274
audio/video file name 273
audio/video file path 273
audio/video number of channels 274
audio/video sample rate 275
audio/video sample size 274
example extractingmovie information 291
get video frame at time 275
querying for QuicktimeMovie object 273
video frame count 274
video height 273
videowidth 273

metadata methods 123, 195
mkdir() 216
movie

SeeVideo andQuicktimeMovie object 268
MRL Parameters and Syntax 34
multi-frame files

frameAdd() 114
getFrame() 116
getFrameCount() 117

multi-frame parameters 49
multiplier

detect() 284

382

N

nextFile() 235
noiseAddNoise() 160
non-executing parameters 49, 95
Normal and Basic Track Assembly 251

O

open() 235
opening files 137
Opening the Inputs 253
otherHighPass() 161
otherMaximum() 162
otherMinimum() 163

P

palettes 171
PDF Files 181
Photoshop files 145

collapse() 84
pixellateFragment() 164
pixellateMosaic() 164
PNG files 179-180
polygon() 165
preview 181
Primary clips 251
print() 53
processObject 280

getFrame() 281
getOutputSize() 280

PSD files 145

Q

quadWarp() 168
QuicktimeMovie object

accessing fromMediaScript 270
API 269
creating newmovie 276
definition 269
error handling 270
example build ofmovie frommultiple sources 287
example changemovie output dimensions 288
example creating animatedGIF 292
example export of an inputmovie 287

example extractingmovie information 291
example grabbing video frames 291
example image processing video frames 289-290
example transcoder 286
examples 285
ExportMovie called 269
ExportMovie function 276
exposing 269
extracting frames 275
instantiating 270
queryingmetadata 273
time units 270

QuicktimeMovie object components
getDuration() 274
getFileName() 273
getFilePath() 273
getFrameAtTime() 275
getFrameCount() 274
getHeight() 273
getNumChannels() 274
getSampleFormat() 274
getSampleRate() 275
getWidth() 273
saveFrameAtTime() 275
setSegment() 277

QuicktimeMovie.ms
exposing Audio/Video 269

R

read() 216-217
readBinary() 217
readNextLine() 218
rectangle() 169
reduce() 171
remove() 218
rename() 218
req object methods 54
request objects

getBatchID() 55
getBatchTempDir() 55
getFileParamNames() 55
getFileParamPath() 56
getHeader() 56
getHeaderNames() 57
getJobID() 57
getJobTempDir() 58
getNotCached() 58
getParameter() 58
getParameterNames() 59
getPath() 59

MediaRich CORE 6.2 • Programmer's Guide

getQueryString() 59
getRequestURL() 59
getScriptPath() 60

resolution 126-127, 197
response contents 60
response types 61
RespType 61
rgb() 53
RgbColor object 241
rmdir() 218
rotate() 174
rotate3d() 175

S

save() 177, 222, 233
saveEmbeddedProfile() 183
saveFrameAtTime()

video 275
scale() 183
scene sampler

seeSceneDetectFast object 283
SceneDetectFast object 283

determining dark frames 284
determining howmany framesare considered 284
determining light frames 284
including 283
using 283

SceneDetectFast.ms 283
selection() 186
send() 237
setColor() 188
setFrame() 190
setFromAddress() 237
setLayer() 191
setLayerBlend() 191
setLayerEnabled() 192
setLayerHandleX() 192
setLayerHandleY() 193
setLayerOpacity() 193
setLayerPixels() 194
setLayerX() 194
setLayerY() 195
setMessage() 238
setMessageHTML() 238
setMetadata() 195
setPassword() 239
setPixel() 196
setResolution() 197

383

setSegment()
audio/video 277

setServer() 239
setShared() 219
setSourceProfile() 198
setSubject() 239
setText() 225
setTextType() 225
setUsername() 240
sharpenSharpen() 198
sharpenSharpenMore() 199
sharpenUnsharpMask() 200
sizeText() 201
Slice 30
SMPTE Time code 270
Specifying ICC profiles 86
stringTrimBoth() 53
stringTrimEnd() 53
stringTrimStart() 53
stylizeDiffuse() 203
stylizeEmboss() 204
stylizeFindEdges() 205
stylizeTraceContour() 206
SWF XMP support 344
SWF XMP support added 344
System Object 220

T

text rendering 102, 156
Text Response object 223

setTextType() 225
TextExtraction object 226

getEntireText() 226
getText() 227

TextResponse object
append() 224
getText() 224
getTextType() 224
getType() 225
setText() 225

TIFF files 182
TIFF preview 181
tiled TIFF modepyramid TIFF 182
time-to-live 34
transcoding processor 253
transparency 185

384

U

Unzip object 233
close() 234
extractAll() 234
extractFile() 234
firstFile() 235
getFileName() 235
nextFile() 235
open() 235

User Profile Information 31

V

version() 51, 54
Video

audio sample rate 275
audio sample size 274
creating new 276
Determining output size in ExportMovie 283
duration 274
example build ofmovie frommultiple sources 287
example changemovie output dimensions 288
example creating animatedGIF 292
example export of an inputmovie 287
example extractingmovie information 291
example grabbing video frames 291
example image processing video frames 289-290
example transcoder 286
Examples 285
ExportMovie format and compression parameters 279
extracting frames 275
file formatssupported 369
file name 273
file path 273
frame count 274
get frame at time 275
height 273
including a blank frame 278
including a still image 278
MediaScript API 248, 268
number of audio channels 274
preprocessing input frames 281
save frame at time 275
scene sampler 283
See alsoQuicktimeMovie object 268
set segment to export 277
specifying output size 280
width 273

VideoStill object 278

VideoStill() 278

W

watermarks
digimarcDetect() 97
digimarcEmbed() 98
digimarcRead() 100

WBMP files 151
write() 219
writeBinary() 219
writing files 177

X

XmlDocument object 221
loadFile() 221
loadString() 222
save() 222

XMP universal "blob" 345

Z

Zip object 232
addFile() 233
save() 233

Zoom (zm) 32
zoom() 207

MediaRich CORE 6.2 Programmer's Guide

385

	CHAPTER 1 MediaRich CORE Programming
	CHAPTER 2 MediaRich Client APIs
	API Overview
	API Selection
	MediaRich Requests
	HTTP API
	.NET API
	Java API
	Web Services API
	COM Client API
	Using Request Parameters

	CHAPTER 3 Using MediaScript
	The Media Object
	Preprocessor Directives
	Named Arguments
	File Systems
	MediaScript Error Handling

	CHAPTER 4 MediaScript Objects and Methods
	Working with Media Processing Functions
	Request and Response Global Objects
	Media Object
	File Object
	System Object and Methods
	XmlDocument Object
	TextResponse Object
	TextExtraction Object
	IccProfile Object
	Zip Object
	Unzip Object
	Emailer Object
	Cubic Object (2D Interpolator)
	The RgbColor Object
	The CmykColor Object
	The AWS Object
	The Azure Object

	CHAPTER 5 MediaRich CORE Audio/Video 2
	MediaRich AVCore 2
	Basic AV Transcoding
	Using AV Settings Files
	AVCore 2 Callbacks
	Working with AVClips
	AVCore 2 Metadata
	AVCore 2 Best Practices

	CHAPTER 6 MediaRich CORE Audio/Video 1.1 (Legacy)
	A/V CORE 1.1 Overview
	Using MediaScript to Access A/V 1.1 Objects
	Querying Movie Metadata
	Extracting Frames from a Movie
	Using ExportMovie to Create New Movies
	Using Compression Settings Files
	The Scene Sampler
	The AVCore 1.1 Examples

	CHAPTER 7 MediaRich Proof Sheet Generator
	The generate Method
	Proof Sheet Layout
	Defining the Proof Sheet XML Input

	CHAPTER 8 MediaRich Hot Folders
	Working with Hot Folders
	Hot Folder Script Structure
	Hot Folder Script Programming

	CHAPTER 9 MediaRich Color Management
	MediaRich Color Management
	MediaScript Color Management Functions
	Accuracy and Reversibility of Color Conversions
	Common Color Management Questions

	CHAPTER 10 MediaRich Metadata Support
	Low-Level Metadata Interface
	High-Level Support for EXIF, IPTC, and XMP
	Common Metadata Methods
	Metadata from AVLowLevel API

	APPENDIX A MediaRich Programming Best Practices
	Media Creation Best Practices
	MediaScript Integration
	Managing MRL Parameters
	Managing Performance

	APPENDIX B MediaScript Troubleshooting
	MediaScript Problems
	Script Errors
	MediaGenerator Errors
	Loading Raw Camera Files
	Memory Issues with Very Large Image Files

	APPENDIX C File Format Support
	MediaRich Image File Formats Natively Supported
	MediaRich Audio and Video File Formats Natively Supported
	Office File Formats Supported

